KLNCE UG EEE R2020 (AY 2021-2022)

K.L.N. COLLEGE OF ENGINEERING

Pottapalayam – 630 612, Sivagangai District

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Estd: 1994

THIRD YEAR CURRICULUM AND SYLLABUS

REGULATIONS 2020

For Under Graduate Program

B.E. ELECTRICAL AND ELECTRONICS ENGINEERING CHOICE BASED CREDIT SYSTEM

(For the students admitted in the academic year 2021-2022 onwards)

K.L.N. COLLEGE OF ENGINEERING, POTTAPALAYAM (An Autonomous Institution, Affiliated to Anna University, Chennai)

VISION OF THE INSTITUTION

To become a Centre of Excellence in Technical Education and Research in producing Competent and Ethical professionals to the society.

MISSION OF THE INSTITUTION

To impart Value and Need based curriculum to the students with enriched skill development in the field of Engineering, Technology, Management and Entrepreneurship and to nurture their character with social concern and to pursue their career in the areas of Research and Industry.

VISION OF THE DEPARTMENT

To become a high standard of excellence in Education, Training and Research in the field of Electrical & Electronics Engineering and allied applications.

MISSION OF THE DEPARTMENT

- 1. To create graduates possess excellent knowledge in Electrical and Electronics Engineering fundamentals.
- 2. To provide employable graduates for industry and to do high quality research.
- 3. To Emphasis on Ethics, professional conduct for societal development

K.L.N. COLLEGE OF ENGINEERING, POTTAPALAYAM (An Autonomous Institution, Affiliated to Anna University, Chennai)

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO 1** To excel in industrial or graduate work in Electrical and Electronics Engineering and allied fields.
- **PEO 2** To practice their Professions conforming to Ethical Values and Environmentally friendly policies
- **PEO 3** To work in international and multi-disciplinary Environments.
- **PEO 4** To successfully adapt to evolving Technologies and stay current with their Professions.

PROGRAM SPECIFIC OUTCOMES (PSOs)

- **PSO 1** Apply the fundamentals of Mathematics, Science and Engineering knowledge to identify, formulate, design and investigate complex engineering problems of Electric Circuits, Analog and Digital Electronic Circuits, Electrical Machines and Power Systems.
- **PSO 2** Apply appropriate techniques and modern Engineering hardware and software tools in Power Systems to engage in life- long learning and to successfully adapt in multi disciplinary environments

K.L.N. COLLEGE OF ENGINEERING, POTTAPALAYAM

(An Autonomous Institution, Affiliated to Anna University, Chennai)

PROGRAM OUTCOMES (POs)

PO1: Engineering knowledge

Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis

Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions

Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems

Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to providevalid conclusions.

PO5: Modern tool usage

Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6: The engineer and society

Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineeringpractice.

PO7: Environment and sustainability

Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Ethics

Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Individual and team work

Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communication

Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: Project management and finance

Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning

Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

K.L.N. COLLEGE OF ENGINEERING, POTTAPALAYAM (An Autonomous Institution, Affiliated to Anna University, Chennai)

REGULATIONS 2020

For Under Graduate Program B.E. ELECTRICAL AND ELECTRONICS ENGINEERING

CHOICE BASED CREDIT SYSTEM

CATEGORY OF COURSES

- Humanities and Social Sciences (HS) Courses include Technical English, Environmental Science and Engineering, Engineering Ethics and human values, Communication Skills and Management courses.
- ii. Basic Sciences (BS) Courses include Mathematics, Physics, and Chemistry.
- iii. Engineering Sciences (ES) Courses include Engineering Practices, Engineering Graphics, Basics of Electrical / Electronics / Mechanical / Computer Engineering / Instrumentation etc.
- iv. **Professional Core (PC) Courses** include the core courses relevant to the chosen programme of study.
- v. **Professional Elective (PE) Courses** include the elective courses relevant to the chosen programme of study.
- vi. Open Elective (OE) Courses include courses from other departments which a student can choose from the list specified in the curriculum of the students B.E. / B.Tech. Programmes.
- vii. **Employability Enhancement Courses (EEC)** include Project Work and/or Internship, Seminar, Professional Practices, Case Study and Industrial/Practical Training.
- viii. **Mandatory Courses (MC)** include Personality and Character development and the courses recommended by the regulatory bodies such as AICTE, UGC, etc

K.L.N. COLLEGE OF ENGINEERING, POTTAPALAYAM (An Autonomous Institution, Affiliated to Anna University, Chennai) B.E. ELECTRICAL AND ELECTRONICS ENGINEERING

S. COURSE COURSE TITLE CATE CONTACT L Ρ С Т NO CODE GORY PERIODS THEORY 20EE501 **Power System Analysis** PC 4 1. 3 1 0 4 2. 20EE502 Power Electronics PC 3 3 0 0 3 20EE503 **Digital Signal Processing** PC 3. 4 3 0 4 1 4. 20EE504 **Control Systems** PC 4 3 1 0 4 5. 20EE505 Microprocessors, Microcontrollers PC 3 3 3 0 0 and Applications 6. **Professional Elective-I** ΡE 3 3 0 0 3 7. 20MC501 Constitution of India MC 1 1 0 0 0 PRACTICAL 20EE5L1 Control and Instrumentation PC 8. 3 0 0 3 1.5 Laboratory Microprocessors and Microcontrollers PC 9. 20EE5L2 3 0 0 3 1.5 Laboratory EEC 10. 20HS4L2 Professional Communication 2 0 0 2 1 Laboratory TOTAL 30 19 3 8 25

SEMESTER V

SEMESTER VI

S. NO	COURSE CODE	COURSE TITLE	CATE GORY	CONTACT PERIODS	L	Т	Ρ	С
		THEORY						
1.	20EE602	Power System Operation and Control	PC	3	3	0	0	3
2.	20IT301	Object Oriented Programming	ES	3	3	0	0	3
3.		Open Elective-I	OE	3	3	0	0	3
4.		Professional Elective-II	PE	3	3	0	0	3
5.		Professional Elective-III	PE	3	3	0	0	3
6.		Professional Elective –IV	PE	3	3	0	0	3
		PRACTICAL						
7.	20EE6L1	Power Electronics and Drives Laboratory	PC	3	0	0	3	1.5
8.	20EE6L2	Mini Project-I	EEC	4	0	0	4	2
9.	20CS6L3	ES	3	0	0	3	1.5	
		28	18	0	10	23		

K.L.N. COLLEGE OF ENGINEERING, POTTAPALAYAM (An Autonomous Institution, Affiliated to Anna University, Chennai)

B.E. ELECTRICAL AND ELECTRONICS ENGINEERING PROFESSIONAL ELECTIVE COURSES: VERTICALS

			Hono	urs		
	Vertical I	Vertical II	Vertical III	Vertical IV	Vertical V	Vertical VI
S. No	Modern Power System Engineering	Power Electronics Converters and Drives	Electric Vehicle Technology	Embedded Systems and Controllers	Advanced Control Systems Engineering	Diversified Courses
1.	Power Quality	Modern Power Converters	Power Electronic Converters for Electric Vehicles	Embedded Processors	Modern Control System	Operations Research
2.	Smart Grid	Special Electrical Machines	Electric Vehicles and Power Management	Embedded C- Programming	System Identification and Adaptive Control	Computer Organization and Architecture
3.	Flexible AC Transmission System	Solid StateDrives	Electric Vehicle Design, Mechanics and Control	Embedded System Design	Optimal Control	Block Chain Technology
4.	Energy Auditing and Management	Control of Electrical Drives	Design of Electric Vehicle Charging System	Embedded Control for Electric Drives	Process Modeling and Simulation	Data Structures and Algorithms
5.	High Voltage Engineering	SMPS and UPS	Testing of Electric Vehicles	Smart System Automation	Computer Control of Processes	Soft Computing
6.	Electric Energy Generation, Utilization and Conservation	Power Electronics for Renewable Energy Systems	Grid Integration of Electric Vehicles	Embedded System for Automotive Applications	Principles of Robotics	Biomedical Instrumentation
7.	Under Ground Cable Engineering	Multilevel Power Converters	Intelligent control of Electric Vehicles	VLSI Design	Machine Monitoring System	Energy Storage Systems
8.	Substation Engineering and Automation	Control of Power Electronics Circuits	Design of Electrical Apparatus	MEMS and NEMS	Model Based Control	Probability and Statistics

Registration of Professional Elective Courses from Verticals:

Professional Elective Courses will be registered in Semesters V,VI and VII. These courses are listed in groups called verticals that represent a particular area of specialization / diversified group. Students are permitted to choose all the Professional Electives from a particular vertical or from different verticals. Further, only one Professional Elective course shall be chosen in a semester horizontally (row-wise). However, two courses are permitted from the same row, provided one course is enrolled in Semester one and another in semester the next semester.

The registration of courses for B.E./B.Tech (Honours) or Minor degree shall be done from Semester V to VIII. The procedure for registration of courses explained above shall be followed for the courses of B.E/B.Tech (Honours) or Minor degree also.

- 4.10 B.E. / B. Tech. (Hons) Specialisation in the same discipline, B.E. / B. Tech. (Hons) and B.E. /
- B. Tech. minor in other specialisation.
- (i) B.E / B.Tech. Honours

a. The students should have **earned additional courses (minimum of 18 credits) from more than one vertical of the same programme.**

- b. Should have passed all the courses in the first attempt.
- c. Should have earned a minimum CGPA of 7.50.
- (ii) B.E./B.Tech. (minor in other specialisation)

The student should have earned additionally a minimum of 18 credits in any one of the verticals of other B.E/B.Techprogrammes

K.L.N. COLLEGE OF ENGINEERING, POTTAPALAYAM

(An Autonomous Institution, Affiliated to Anna University, Chennai)

B.E. ELECTRICAL AND ELECTRONICS ENGINEERING PROFESSIONAL ELECTIVE COURSES: VERTICALS

VERTICAL - I: MODERN POWER SYSTEM ENGINEERING

S. NO	COURSE CODE	COURSE TITLE	CATE GORY	CONTACT PERIODS	L	Т	Ρ	С
		THEORY						
1.	20EEV11	Power Quality	PE	3	3	0	0	3
2.	20EEV21	Smart Grid	PE	3	3	0	0	3
3.	20EEV31	Flexible AC Transmission System	PE	3	3	0	0	3
4.	20EEV41	Energy Auditing and Management	PE	3	3	0	0	3
5.	20EEV51	High VoltageEngineering	PE	3	3	0	0	3
6.	20EEV61	Electric Energy Generation, Utilization	PE	3	3	0	0	3
		and Conservation						
7.	20EEV71	Under Ground Cable Engineering	PE	3	3	0	0	3
8.	20EEV81	Substation Engineering and	PE	3	3	0	0	3
		Automation						

VERTICAL – II: POWER ELECTRONICS CONVERTERS AND DRIVES

S.	COURSE	COURSE TITLE	CATE	CONTACT	L	Т	Ρ	С
NO	CODE		GORY	PERIODS				
		THEORY						
1.	20EEV12	Modern Power Converters	PE	3	3	0	0	3
2.	20EEV22	Special Electrical Machines	PE	3	3	0	0	3
3.	20EEV32	Solid State Drives	PE	3	3	0	0	3
4.	20EEV42	Control of Electrical Drives	PE	3	3	0	0	3
5.	20EEV52	SMPS and UPS	PE	3	3	0	0	3
6.	20EEV62	Power Electronics for Renewable	PE	3	3	0	0	3
		Energy Systems						
7.	20EEV72	Multilevel Power Converters	PE	3	3	0	0	3
8.	20EEV82	Control of Power Electronics Circuits	PE	3	3	0	0	3

VERTICAL – III: ELECTRIC VEHICLETECHNOLOGY

S. NO	COURSE CODE	COURSE TITLE	CATE GORY	CONTACT PERIODS	L	Т	Ρ	С
		THEORY						
1.	20EEV13	Power Electronic Converters for Electric Vehicles	PE	3	3	0	0	3
2.	20EEV23	Electric Vehicles and Power Management	PE	3	3	0	0	3
3.	20EEV33	Electric Vehicle Design, Mechanics and Control	PE	3	3	0	0	3
4.	20EEV43	Design of Electric Vehicle Charging System	PE	3	3	0	0	3
5.	20EEV53	Testing of Electric Vehicles	PE	3	3	0	0	3
6.	20EEV63	Grid Integration of Electric Vehicles	PE	3	3	0	0	3
7.	20EEV73	Intelligent control of Electric Vehicles	PE	3	3	0	0	3
8.	20EEV83	Design of Electrical Apparatus	PE	3	3	0	0	3

S. NO	COURSE CODE	COURSE TITLE	CATE GORY	CONTACT PERIODS	L	Т	Ρ	С
		THEORY						
1.	20EEV14	Embedded Processors	PE	3	3	0	0	3
2.	20EEV24	Embedded C-Programming	PE	3	3	0	0	3
3.	20EEV34	Embedded System Design	PE	3	3	0	0	3
4.	20EEV44	Embedded Control for Electric Drives	PE	3	3	0	0	3
5.	20EEV54	Smart System Automation	PE	3	3	0	0	3
6.	20EEV64	Embedded System for Automotive	PE	3	3	0	0	3
		Applications						
7.	20EEV74	VLSI Design	PE	3	3	0	0	3
8.	20EEV84	MEMS and NEMS	PE	3	3	0	0	3

VERTICAL – IV: EMBEDDED SYSTEMS AND CONTROLLERS

VERTICAL – V: ADVANCED CONTROL SYSTEMS ENGINEERING

S. NO	COURSE CODE	COURSE TITLE	CATE GORY	CONTACT PERIODS	L	Т	Ρ	С
		THEORY						
1.	20EEV15	Modern Control System	PE	3	3	0	0	3
2.	20EEV25	System Identification and Adaptive	PE	3	3	0	0	3
		<u>Control</u>						
3.	20EEV35	Optimal Control	PE	3	3	0	0	3
4.	20EEV45	Process Modeling and Simulation	PE	3	3	0	0	3
5.	20EEV55	Computer Control of Processes	PE	3	3	0	0	3
6.	20EEV65	Principles of Robotics	PE	3	3	0	0	3
7.	20EEV75	Machine Monitoring System	PE	3	3	0	0	3
8.	20EEV85	Model Based Control	PE	3	3	0	0	3

VERTICAL – VI: DIVERSIFIEDCOURSES

S. NO	COURSE CODE	COURSE TITLE	CATE GORY	CONTACT PERIODS	L	Т	Ρ	С
		THEORY						
1.	20EEV16	Operations Research	PE	3	3	0	0	3
2.	20EEV26	Computer Organization and Architecture	PE	3	3	0	0	3
3.	20EEV36/ 20CS8B4	Block Chain Technology	PE	3	3	0	0	3
4.	20EEV46	Data Structures and Algorithms	PE	3	3	0	0	3
5.	20EEV56	Soft Computing	PE	3	3	0	0	3
6.	20EEV66	Biomedical Instrumentation	PE	3	3	0	0	3
7.	20EEV76	Energy Storage Systems	PE	3	3	0	0	3
8.	20EEV86	Probability And Statistics	PE	3	3	0	0	3

S. NO	COURSE CODE	COURSE TITLE	CATE GORY	CONTACT PERIODS	L	Т	Ρ	С
		THEORY						
1.	20OE101	Mechatronics and Applications	OE	3	3	0	0	3
2.	200E303	Fundamentals of Wireless Communication	OE	3	3	0	0	3
3.	20OE304	Satellite Communication Systems	OE	3	3	0	0	3
4.	200E401	Fundamentals of Artificial Intelligence	OE	3	3	0	0	3
5.	200E402	Introduction to Database Management Systems	OE	3	3	0	0	3
6.	200E403	Computer Communication Networks	OE	3	3	0	0	3
7.	200E404	Cloud Infrastructure and Technologies	OE	3	3	0	0	3
8.	20OE503	Internet of Things and Applications	OE	3	3	0	0	3
9.	200E602	Supply Chain Management	OE	3	3	0	0	3
10.	200E702	Fundamentals of MEMS	ŌE	3	3	0	0	3

OPEN ELECTIVE – I (VI SEMESTER)

Enrollment for B.E. / B. Tech. Minor degree (Optional)

A student can also optionally register for additional courses (18 credits) and become eligible for the award of B.E./B.Tech Minor degree. For minor degree, a student shall register for the additional courses (18 credits) from semester V onwards. All these courses have to be in a particular vertical from any one of the other programmes, Moreover, for minor degree the student can register for courses from any one of the following verticals also. Complete details are available in clause 4.10 (Amendments) of Regulations 2020.

VERTICALS FOR MINOR DEGREE (In addition to all the verticals of other degree programmes)

S. NO	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Р	С
		TH	EORY					
1.	1. 20MGV11 Financial Management HS 3 3							3
2.	20MGV21	Fundamentals of Investment	HS	3	3	0	0	3
3.	20MGV31	Banking, Financial Services and Insurance	HS	3	3	0	0	3
4.	20MGV41	Introduction to Blockchain and its Applications	HS	3	3	0	0	3
5.	20MGV51	Fintech Personal Finance and Payments	HS	3	3	0	0	3
6.	20MGV61	Introduction to Fintech	HS	3	3	0	0	3

VERTICAL 1: FINTECH AND BLOCK CHAIN

KLNCE UG EEE R2020 (AY 2021-2022)

S. NO	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Р	С
		TH	EORY					
1.	20MGV12	Foundations of Entrepreneurship	HS	3	3	0	0	3
2.	20MGV22	Team Building & Leadership Management for Business	HS	3	3	0	0	3
3.	20MGV32	Creativity & Innovation in Entrepreneurship	HS	3	3	0	0	3
4.	20MGV42	Principles of Marketing Management For Business	HS	3	3	0	0	3
5.	20MGV52	Human Resource Management for Entrepreneurs	HS	3	3	0	0	3
6.	20MGV62	Financing New Business Ventures	HS	3	3	0	0	3

VERTICAL 2: ENTREPRENEURSHIP

20EE501	POWER SYSTEM ANALYSIS	L	т	Ρ	С
		3	1	0	4

OBJECTIVES:

- To model the power system under steady state operating condition.
- To apply numerical methods to solve the power flow problem.
- To model and analyze the system under symmetrical faulted conditions.
- To model and analyze the system under unsymmetrical faulted conditions.
- To model and analyze the transient behaviour of power system when it is subjected to a fault.

PRE-REQUISITE:

Course Code: 20EE201, 20EE402, 20BS402 Course Name: Electric Circuit Analysis, Transmission and Distribution, Numerical Methods

UNIT - I INTRODUCTION

Need for system planning and operational studies – basic components of a power system -Introduction to restructuring - Single line diagram – per phase and per unit analysis – Generator transformer – transmission line and load representation for different power system studies -Primitive network - construction of Y-bus using inspection and singular transformation methods.

UNIT - II POWER FLOW ANALYSIS

Importance of power flow analysis in planning and operation of power systems - statement of power flow problem - classification of buses - development of power flow model in complex variables form - iterative solution using Gauss-Seidel method - Q-limit check for voltage controlled buses – power flow model in polar form - iterative solution using Newton-Raphson method - Fast Decoupled load flow algorithm.

UNIT - III FAULT ANALYSIS – BALANCED FAULTS

Importance of short circuit analysis - assumptions in fault analysis - analysis using Thevenin's theorem - Z-bus building algorithm - fault analysis using Z-bus – computations of short circuit capacity, post fault voltage and currents.

UNIT - IV FAULT ANALYSIS – UNBALANCED FAULTS

Introduction to symmetrical components – sequence impedances – sequence circuits of synchronous machine, transformer and transmission lines - sequence networks analysis of single line to ground, line to line and double line to ground faults using Thevenin's theorem and Z-bus matrix.

UNIT - V STABILITY ANALYSIS

Importance of stability analysis in power system planning and operation - classification of power system stability - angle and voltage stability – Single Machine Infinite Bus (SMIB) system: Development of swing equation - equal area criterion - determination of critical clearing angle and time– solution of swing equation by modified Euler method and Runge-Kutta fourth order method - Recent trends in analysis of power system stability.

TOTAL: 60 PERIODS

12

12

12

12

- 1. Nagrath I.J. and Kothari D.P., 'Modern Power System Analysis', Tata McGraw-Hill, Fourth Edition, 2011.
- 2. John J. Grainger and W.D. Stevenson Jr., 'Power System Analysis', Tata McGraw-Hill, Sixth reprint, 2017.

REFERENCES:

- 1. P. Venkatesh, B.V. Manikandan, S. Charles Raja, A. Srinivasan, 'Electrical Power Systems -Analysis, Security and Deregulation', PHI Learning Private Limited, New Delhi, 2012.
- 2. Kundur P., 'Power System Stability and Control', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 10th reprint, 2010.
- 3. Pai M A, 'Computer Techniques in Power System Analysis', Tata Mc Graw-Hill Publishing Company Ltd., New Delhi, Second Edition, 2007.
- Hadi Saadat, 'Power System Analysis', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 21st reprint, 2010
- 5. Olle. I. Elgerd, 'Electric Energy Systems Theory An Introduction', Tata McGraw Hill Publishing Company Limited, New Delhi, Second Edition, 2012.

			-											
Course Na	<u>me : PC</u>	JWER	Cour	se Code	: 20EE50'									
CO				C	ourse	Outco	mes				Unit	K –CO	POs	PSOs
C301.1	Apply	the n	nathem	atical	and er	ngineer	ing kn	owledg	e to fo	orm bus	6 I	K3	1,2,3	1,2
	admit	tance m	natrix a	nd impe	edance	matrix								
C301.2	Apply	Gauss	-Seide	and N	lewton	Raphs	on met	hods to	solve	the load	I II	K3	1,2,3	1,2
	flow p	roblem												
C301.3	Analy	ze the p	power s	system		K4	1,2,3,4	1,2						
C301.4	Analy	ze the p	oower s	system	under ι		IV	K4	1,2,3,4	1,2				
C301.5	Analy	ze the	transie	nt stab	ility of	ual area	i V	K4	1,2,3,4	1,2				
	criteri	on												
C301.6	Analy	ze the	transi	ent sta	ability (of the	power	syster	n usin	g swing	I V	K4	1,2,3,4	1,2
	equat	ion												
						CO	-PO Ma	apping						
CO	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C301.1	3	2	1	-	-	-	-	-	-	-	-	-	2	2
C301.2	3	2	1	-	-	-	-	-	-	-	-	-	2	2
C301.3	3	3	2	1	-	-	-	-	-	-	-	-	2	2
C301.4	3	3	2	1	-	-	-	-	-	-	-	-	2	2
C301.5	3	3	2	1	-	-	-	-	-	-	-	-	2	2
C301.6	3	3	2	1	-	-	-	-	-	-	-	-	2	2
C301	3	3	2	1	-	-	-	-	-	-	-	-	2	2

3	0	0

POWER ELECTRONICS

OBJECTIVES:

20EE502

- To understand the various applications of Power electronic devices for conversion, control and conditioning of the electrical power and to get an overview of different types of power semiconductor devices and their dynamic characteristics.
- To understand the operation, characteristics and performance parameters of controlled rectifiers.
- To study the operation, switching techniques and basics topologies of DC-DC switching regulators.
- To learn the different modulation techniques of pulse width modulated inverters and to understand harmonic reduction methods.
- To study the operation of AC voltage controller and various configurations of AC voltage controller.

PRE-REQUISITE:

Course Code: 20EE302 Course Name: Electron Devices and Circuits

UNIT - I POWER SEMI-CONDUCTOR DEVICES

Study of switching devices, SCR, TRIAC, GTO, BJT, MOSFET, IGBT and IGCT- Static characteristics: SCR, MOSFET and IGBT - Triggering and commutation circuit for SCR, Introduction to Driver and snubber circuits.

UNIT - II PHASE-CONTROLLED CONVERTERS

2-pulse, 3-pulse and 6-pulseconverters – performance parameters – Effect of source inductance – Firing Schemes for converter – Dual converters, Applications - light dimmer, Excitation system, Solar PV systems.

UNIT - III DC TO DC CONVERTERS

Step-down and step-up chopper - control strategies - Buck, Boost, and Buck-Boost - Performance analysis - PWM techniques for choppers - Switched mode regulators – Applications - Battery operated vehicles.

UNIT - IV INVERTERS

Single phase and three phase voltage source inverters (both120° mode and 180° mode) – Voltage & harmonic control - PWM techniques: Multiple PWM, Sinusoidal PWM, modified sinusoidal PWM – Introduction to space vector modulation – Current source inverter, Applications - Induction heating, UPS.

UNIT - V AC TO AC CONVERTERS

Single phase and Three phase AC voltage controllers – Control strategy - Power Factor Control – Multistage sequence control - single phase and three phase cyclo converters – Introduction to Matrix converters, Applications – welding.

TOTAL: 45 PERIODS

Т

L

Ρ

С

3

9

9

9

9

- 1. Muhammad H.Rashid, 'Power Electronics Circuits, Devices & Applications', 4th Edition, Pearson India, 2017
- 2. P.S.Bimbra, 'Power Electronics', Khanna Publishers, Fifth Edition, 2014.
- 3. Joseph Vithayathil, 'Power Electronics, Principles and Applications', McGraw Hill Series, 6th Reprint, 2013.

REFERENCES:

- 1. Ned Mohan, Tore.M.Undeland, William.P.Robbins, 'Power Electronics: Converters, Applications and Design', 3rd Edition Wiley India, New Delhi, 2007.
- 2. M.D.Singh & K.B Khanchandani, 'Power Electronics', 2nd Edition, Tata McGraw Hill Publishing Co.Ltd., New Delhi, 2008.
- 3. D. Ronanki, S. Singh, S. Williamson, 'Comprehensive Topological Overview of Rolling Stock Architectures and Recent Trends in Electric Railway Traction Systems', IEEE Trans. Transportation Electrification., vol. 3, no. 3, pp. 724-738, May 2017.
- 4. JP Agarwal, 'Power Electronic Systems: Theory and Design', 1e, Pearson Education, 2002.
- 5. Ashfaq Ahmed, 'Power Electronics for Technology', Pearson Education, Indian reprint, 2003.

Course Na	me : PC	OWER	Cour	se Code	: 20EE502	2								
CO				C	ourse	Outco	mes				Unit	K –CO	POs	PSOs
C302.1	Expla	in the	signific rters ar	ance o nd its ch	of switc	hing d	evices	and its	s applio	cation to		K2	1,2	1
C302.2	Apply perfor	the k mance	nowlec	lge of eters of	engine 2 puls	eering e, 3 pul	fundan se and	nentals 6 pulse	to de e conve	rive the rter	e II	К3	1,2,3	1
C302.3	Apply perfor	the k mance	nowlec analys	lge of is of Bu	e	K3	1,2,3	1						
C302.4	Expla Invert	in the c ers and	peratio Currer	n of sir nt Sour	ngle ph ce Inve	e Source	e IV	K2	1,2	1				
C302.5	Expla	in the o	peratio	n of sin	gle & tł	nree ph	ase AC	CVoltag	e contr	ollers	V	K2	1,2	1
C302.6	Expla	in the o	peratio	n of sin	gle & th	nree ph	ase Cy	clo con	verters		V	K2	1,2	1
						CO	-PO Ma	apping			1			
CO	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C302.1	2	1	-	-	-	-	-	-	-	-	-	-	2	-
C302.2	3	2	1	-	-	-	-	-	-	-	-	-	2	-
C302.3	3	2	1	-	-	-	-	-	-	-	-	-	2	-
C302.4	2	1	-	-	-	-	-	-	-	-	-	-	2	-
C302.5	2	1	-	-	-	-	-	-	-	-	-	-	2	-
C302.6	2	1	-	-	-	-	-	-	-	-	-	-	2	-
C302	3	1	1	-	-	-	-	-	-	-	-	-	2	-

KLNCE UG EEE R2020 (AY 2021-2022)

20EE503

DIGITAL SIGNAL PROCESSING

L T P C 3 1 0 4

OBJECTIVES:

To impart knowledge on

- Classification of signals and systems & their mathematical representation.
- Analysis of discrete-time systems using different types of transforms.
- Computation of Discrete Fourier Transform using FFT algorithm.
- Design of IIR and FIR digital filters using impulse invariant and bilinear transformation techniques and using various window functions.
- Architecture of digital signal processor.

PRE-REQUISITE:

Course Code: 20BS301 Course Name: Transforms and Partial Differential Equations

UNIT – I INTRODUCTION TO SIGNALS AND SYSTEMS

Classification of signals: Continuous and discrete, energy and power; mathematical representation of signals; operation of signals, Classification of systems: Continuous and discrete, linear, causal, stable, dynamic, recursive, time variance; sampling techniques, quantization, quantization error, Nyquist rate, aliasing effect.

UNIT – II DISCRETE TIME SYSTEM ANALYSIS

Z-transform and its properties, ROC - inverse z-transforms-Long division, Partial Fraction Expansion method - difference equation – Solution by Z-transform, Application to discrete systems - Stability analysis, frequency response- Linear Convolution – Analysis of LTI systems in z-domain.

UNIT - III DISCRETE FOURIER TRANSFORM & COMPUTATION

DFT - Properties, magnitude and phase representation - Computation of DFT using FFT algorithm – DIT & DIF - FFT using radix 2 – Butterfly structure – Inverse DFT using FFT algorithm, Circular Convolution.

UNIT - IV DESIGN OF DIGITAL FILTERS

IIR design: IIR filter Realization: Direct Form I and II, Cascade and Parallel forms - Analog filter design - Butterworth and Chebyshev approximations (LPF and HPF) - Digital filter design using Impulse invariant and Bilinear transformation.

FIR design: FIR filter Realization - Linear Phase Characteristics - Filter design using Windowing Techniques (Rectangular, Hamming, Hanning windows only)

UNIT - V DIGITAL SIGNAL PROCESSORS

Introduction – TMS320C5X Architecture DS Processor – Features – Addressing Modes – Functional modes - Introduction to Commercial DS Processors - Application: Musical sound processing system.

17

TOTAL: 60 PERIODS

12 atic

12

12 thm

15

- 1. John G. Proakis, D.G. Manolakis and D.Sharma, "Digital Signal Processing Principles, Algorithms and Applications", 4th edition, Pearson Education, 2012.
- 2. Sanjit K. Mitra, "Digital Signal Processing A Computer based approach", 4th edition, McGraw-Hill, 2013.

REFERENCES:

- 1. Alan V Oppenheim, Ronald W Schafer, John R Back, "Discrete Time Signal Processing", 3rd edition, Pearson new international edition, 2014.
- 2. Emmanuel C. Ifeachor & Barrie W. Jervis Digital Signal Processing A practical Approach, 2nd edition, Prentice Hall, 2011.
- 3. Johny R. Johnson, "Introduction to Digital Signal Processing", Prentice Hall, 2002.
- 4. Salivahanan S, A.Vallavaraj, C.Gnanapriya. "Digital Signal Processing", Tata McGraw Hill/TMH, New Delhi, 2014.

OUTCOMES:

Course Na	me : DI	GITAL	Cour	se Code	: 20EE503	;								
CO				C	ourse	Outco	mes				Unit	K –CO	POs	PSOs
C303.1	Identif	fy the ty	/pe of g	jiven di	screte t	ime sig	nals ar	nd syste	ems.		I	K3	1,2,3	1
C303.2	Apply	Z-trans	sform to	o analyz	ze the g	jiven di	screte t	ime sys	stems.		II	K3	1,2,3	1
C303.3	Apply	FFT al	gorithm	to con	npute D	FT.						K3	1,2,3	1
C303.4	Desig techni	n IIR f ques fo	ilter us or the g	ing im iven sp	ormatior	IV	K3	1,2,3	1					
C303.5	Desig and H	n FIR f anning	ilter us) for the	ing win e given	dowing specific	lamming	I IV	K3	1,2,3	1				
C303.6	Explai mode:	in the a s.	architec	ture of	dressing	I V	K2	1,2	1					
						CO	-PO Ma	apping						
CO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C303.1	3	2	1	-	-	-	-	-	-	-	-	-	2	-
C303.2	3	2	1	-	-	-	-	-	-	-	-	-	2	-
C303.3	3	2	1	-	-	-	-	-	-	-	-	-	2	-
C303.4	3	2	1	-	-	-	-	-	-	-	-	-	2	-
C303.5	3	2	1	-	-	-	-	-	-	-	-	-	2	-
C303.6	2	1	-	-	-	-	-	-	-	-	-	-	2	-
C303	3	2	1										2	

KLNCE UG EEE R2020 (AY 2021-2022)

20EE504	CONTROL SYSTEMS	L	Т	Ρ	С
		3	1	0	4

OBJECTIVES:

- To understand the use of transfer function models to analyze physical systems.
- To provide adequate knowledge in the time response of systems and steady state error analysis.
- To accord basic knowledge in obtaining the open loop and closed-loop frequency responses of systems.
- To introduce stability analysis and design of compensators.
- To introduce state variable representation of physical systems.

PRE-REQUISITE:

Course Code: 20EE201, 20BS301 Course Name: Electric Circuit Analysis, Transforms and Partial Differential Equations

UNIT - I SYSTEMS AND REPRESENTATION

Concepts of Control Systems - Open and Closed loop systems - Transfer functions - Mathematical modeling - Electrical, Mechanical and Electromechanical systems - Electrical analogues of Mechanical systems – Block diagram - Signal flow graph.

UNIT - II TIME RESPONSE ANALYSIS

Standard test signals - Time responses - Time domain specifications - Poles and zeros and their effects on solutions - Steady state error and error constants - Introduction to PI, PD and PID Controllers.

UNIT - III FREQUENCY RESPONSE ANALYSIS

Performance specification in frequency domain - Frequency response of standard second order system - Bode plot – Polar plot – Introduction to closed loop Frequency Response - Design of Lag, Lead and Lag-Lead compensator using bode plots.

UNIT - IV CONCEPTS OF STABILITY ANALYSIS

The concept of stability – Routh Hurwitz stability criterion – Root Locus Technique: The root locus concept - construction of root loci - Effect of adding poles and zeros - Gain margin and phase margin - Nyquist stability criterion.

UNIT - V STATE VARIABLE ANALYSIS

Concepts of State, State variables and State models - State space equations - State space representation of dynamic systems - Transfer function from State Variable Representation - State transition matrix - Concepts of controllability and observability.

TOTAL: 60 PERIODS

12

12

12

12

- 1. Nagarath, I.J. and Gopal, M., 'Control Systems Engineering', New Age International Publishers, 2017.
- 2. Katsuhiko Ogata, 'Modern Control Engineering', Pearson, 2015.

REFERENCES:

- 1. Benjamin C. Kuo, 'Automatic Control Systems', Wiley, 2014.
- 2. Richard C.Dorf and Bishop, R.H., 'Modern Control Systems', Pearson Education, 2009
- 3. M.Gopal, 'Control System: Principle and design', McGraw Hill Education, 2012
- 4. Ashfaq Husain, Haroon Ashfaq, 'Control Systems', Dhanpat Rai & Co., 2015

Course Na	me : CO	ONTRO	Cour	se Code	: 20EE504	L .								
CO				C	ourse	Outco	mes				Unit	K –CO	POs	PSOs
C304.1	Apply	the ki	nowled	ge of r	nathem	natics,	Engine	ering f	undame	entals to		K3	1,2,3	1
	develo	op matl	hematio	al mod	els for	physica	al syste	m and	simplify	/ it using				
	reduct	tion tec	hnique	s.										
C304.2	Apply	the ki	nowledg	ge of r	nathem	natics,	Engine	ering f	undame	entals to		K3	1,2,3	1
	comp	ute the	time do	o main r	systems	;								
	to test	t inputs												
C304.3	Analy	ze the	stabilit	v of the	e svste	m usin	a differ	ent fre	auencv	domair		K4	1.2.3.4	1
	metho	ods		,	,		5		1.2				,_,_, '	
C304 4	Desig	n the	comp	ensator	s and	their	select	ion to	meet	desired		K4	1234	1
0304.4	respo	neo	comp	chisator	5 8110	uicii	301001		meet	uconce		114	1,2,0,7	•
C204 5	Apoly		hohovia	or of old	and lo		0000 110	ing too		an Dan	+ IV/	K4	1024	1
C304.5	Analy.	ze ine ta alamia				op syst	erns us	ing loo	is such	as Roo		N 4	1,2,3,4	1
	locus	technic	lue, Ro	uth Hur	witz an			eria				1/0		
C304.6	Apply	the ki	nowled	ge of r	nathem	natics,	Engine	ering to	undame	entals to		K3	1,2,3	1
	develo	op state	e space	model	s.									
	-	-	-	-	-	CO	-PO Ma	apping	-	-	-	-		
CO	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C304.1	3	2	1	-	-	-	-	-	-	-	-	-	2	-
C304.2	3	2	1	-	-	-	-	-	-	-	-	-	2	-
C304.3	3	3	2	1	-	-	-	-	-	-	-	-	2	-
C304.4	3	3	2	1	-	-	-	-	-	-	-	-	2	-
C304.5	3	3	2	1	-	-	-	-	-	-	-	-	2	-
C304.6	3	3	1	-	-	-	-	-	-	-	-	-	2	-
C304	3	3	1	1	-	-	-	-	-	-	-	-	2	-

20EE505MICROPROCESSORS, MICROCONTROLLERS ANDLTPCAPPLICATIONS3003

OBJECTIVES:

- To understand the Architecture of 8086 microprocessor.
- To develop skills in simple program writing in assembly languages
- To introduce commonly used peripheral/ interfacing ICs.
- To study and understand typical applications of micro-processors.
- To study and understand the typical applications of micro-controllers

PRE-REQUISITE:

Course Code: 20EE301. Course Name: Digital Logic Circuits.

UNIT - I INTRODUCTION TO 8086 MICROPROCESSOR

Introduction to 8086 – Microprocessor architecture – Addressing modes - Instruction set and assembler directives – Assembly language programming – Modular Programming - Linking and Relocation - Stacks - Procedures – Macros – Interrupts and interrupt service routines – Byte and String Manipulation.

UNIT - II 8086 SYSTEM BUS STRUCTURE

8086 signals – Basic configurations – System bus timing –System design using 8086 – I/O programming – Introduction to Multiprogramming – System Bus Structure – Multiprocessor configurations – Coprocessor, Closely coupled and loosely Coupled configurations – Introduction to advanced processors.

UNIT - III INTERFACING BASICS AND ICS

Study of Architecture and programming of ICs: 8255 PPI, 8259 PIC, 8251 USART, 8279 Key board display controller and 8254 Timer/ Counter – Interfacing with 8086 - A/D and D/A converter interfacing.

UNIT - IV INTRODUCTION TO 8051 MICROCONTROLLER

Functional block diagram - Instruction format and addressing modes – Interrupt structure – Timer – I/O ports – Serial communication, Simple programming- key board and display interface – Temperature control system - stepper motor control - Usage of integrated development environment (IDE) for assembly language programming

UNIT - V INTRODUCTION TO ADVANCED ARCHITECTURE

ARM Cortex-M0 – overview - Programmer's Model - Memory System Overview - System Control Block - Microcontroller Start sequence - Inputs and Outputs - Development Flow

TOTAL: 45 PERIODS

9

q

9

9

- 1. Yu-Cheng Liu, Glenn A.Gibson, 'Microcomputer Systems: The 8086 / 8088 Family Architecture, Programming and Design', Second edition, Pearson, 2015.
- 2. Muhammad Ali Mazidi & Janice Gilli Mazidi, R.D.Kinely, 'The 8051 Micro Controller and Embedded Systems', PHI Pearson Education, 5th Indian reprint, 2007.
- 3. Joseph Yiu , 'The Definitive Guide to the ARM Cortex-M0', Newnes Elsevier, 2011

REFERENCES:

- 1. B.RAM, 'Computer Fundamentals Architecture and Organization', New age International Private Limited, Fifth edition, 2017.
- 2. Soumitra Kumar Mandal, 'Microprocessor & Microcontroller Architecture, Programming & Interfacing using 8085, 8086, 8051', Mc Graw Hill Edu,2013.
- *3.* Ayala, Kenneth J, 'The 8051 microcontroller : architecture, programming, and applications', Cengage Learning India; 3rd edition, 2007
- 4. Douglas V.Hall, 'Microprocessor and Interfacing', McGraw Hill Edu, 2016.
- 5. Krishna Kant, 'Microprocessor and Microcontrollers', Eastern Company Edition, Prentice Hall of India, New Delhi, 2007

OUTCOMES:

Course Na	Course Name : Microprocessors, Microcontrollers And Applications													505
CO				C	ourse	Outcor	nes				Unit	K –CO	POs	PSOs
C305.1	Devel	op and	execut	e progr	ams in	8086 m	nicropro	cessor			I	K3	1,2,3	1
C305.2	Expla	in the S	system	Bus str	ucture o	of 8086	microp	rocess	or.		II	K2	1,2	1
C305.3	Illustra	ate the	e inter		K2	1,2	1							
	micro	controll	er											
C305.4	Expla	in the a	rchitect	ure and		K2	1,2	1						
C305.5	Desig	n micro	control	ler bas	ed Tem	peratu	re contr	ol and	steppe	r motor	IV	K3	1,2,3	1
	contro	ol syste	m.											
C305.6	Expla	in the a	rchitect	ure of <i>i</i>	ARM pr	ocesso	r.				V	K2	1,2	1
						CO-P	О Мар	ping			•			
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C305.1	3	2	1	-	-	-	-	-	-	-	-	-	2	-
C305.2	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C305.3	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C305.4	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C305.5	3	2	1	-	-	-	-	-	-	-	-	-	2	-
C305.6	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C305	2	1	1	-	-	-	-	-	-	-	-	-	1	-

20MC501	CONSTITUTION OF INDIA	L	Т	Р	С
		1	0	0	0

OBJECTIVES:

- To enable the student to understand the importance of the constitution.
- To understand the structure of executive, legislature, and judiciary.
- To understand the philosophy of fundamental rights, duties and Emergency Provisions.
- To understand the autonomous nature of constitutional bodies like Supreme Court and high court.
- To understand the central and state relation financial and administrative.

PRE-REQUISITE: NIL

UNIT-I INTRODUCTION

History of Making of the Indian Constitution - Drafting Committee - (Composition & Working) - Philosophy of the Indian Constitution – Preamble - Salient Features

UNIT-II CONTOURS OF CONSTITUTIONAL RIGHTS & DUTIES

Fundamental Rights - Right to Equality - Right to Freedom - Right against Exploitation Right to Freedom of Religion - Cultural and Educational Rights - Right to Constitutional Remedies Directive Principles of State Policy - Fundamental Duties

UNIT - III ORGANS OF GOVERNANCE

Parliament – Composition - Qualifications and Disqualifications - Powers and Functions -Executive President – Governor - Council of Ministers - Judiciary, Appointment and Transfer of Judges, Qualifications Powers and Functions

UNIT - IV EMERGENCY PROVISIONS

Emergency Provisions - National Emergency, President Rule, Financial Emergency

UNIT - V LOCAL ADMINISTRATION

District's Administration head- Role and Importance - Municipalities – Introduction - Mayor and role of Elected Representative - CEO of Municipal Corporation - Pachayat raj – Introduction – PRI - Zila Pachayat Elected officials and their roles - CEO Zila Pachayat - Position and role-Block level - Organizational Hierarchy (Different departments) - Village level - Role of Elected and Appointed officials - Importance of grass root democracy

TOTAL: 15 PERIODS

3

3

3

3

3

TEXT BOOKS:

- 1. Rajesh Kumar, 'Universal's Guide to the Constitution of India', Universal Law Publications, 2016
- 2. D.C. Gupta, 'Indian Government and Politics', Vikas Pub, 2018.

REFERENCES:

- 1. H.M.Sreevai, 'Constitutional Law of India', 4th edition in 3 volumes, Universal Law Publication.
- 2. J.C. Johari, 'Indian Government and Politics', Shoban Lal & Co, 2012.
- 3. Noorani A.G., (South Asia Human Rights Documentation Centre), 'Challenges to Civil Rights Guarantees in India', Oxford University Press, 2012.

Course N	Name :	CONS	τιτυτι	ON OF	INDIA		Cours	se Co	ode	20MC5	01					
CO				Cou	rse Out	tcomes	5			Uni	t K-0	0		POs		PSOs
C307.1	Expla	ain histo	ory and	philos	ophy of	Indian	Consti	tution.		1	ł	(2		6,8,9,10)	-
C307.2	Expla freed	ain the Iom fror	premis n a civi	es info il rights	rming t perspe	he twin ective.	theme	es of lib	erty an	d II	ĸ	2		6,8,9,10)	-
C307.3	Expla	ain the	powers	and fu	III	K	2		6,8,9,10)	-					
C307.4	Expla	ain the	emerge	ency rul	IV	K2 6,8,9,1)	-					
C307.5	Expla	ain the	structu	re and t	functior	ns of lo	cal adm	ninistra	tion.	V	К	2		6,8,9,10)	-
							CO-PC) Марр	oing							
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC)12	PSO1	PSO	2 PSO3
C307.1	-	-	-	-	-	3	-	2	2	2	-	-		-	I	-
C307.2	-	-	-	-	-	3	-	2	2	2	-	-		-	I	-
C307.3	-	-	-	-	-	3	-	2	2	2	-	-		-	-	-
C307.4	-	-	-	-	-	3	2	2	-	-		-	-	-		
C307.5	-	-	2	2	-	-		-	-	-						
C307.1	-	-	-	-	-	3	-	2	2	2	-	-		-	-	-

20EE5L1	CONTROL AND INSTRUMENTATION	L	Т	Ρ	С
	LABORATORY	0	0	3	1.5

OBJECTIVES:

• To provide knowledge on analysis and design of control system along with basics of instrumentation.

PRE-REQUISITE:

Course Code: 20EE2L2 Course Name: Electric Circuits Laboratory

LIST OF EXPERIMENTS:

CONTROLSYSTEMS:

- 1. P, PI and PID controllers.
- 2. Stability Analysis.
- 3. Modeling of Systems Machines, Sensors and Transducers.
- 4. Design of Lag, Lead and Lag-Lead Compensators.
- 5. Position Control Systems.
- 6. Synchro Transmitter-Receiver and Characteristics.
- 7. Simulation of Control Systems by Mathematical development tools.

INSTRUMENTATION:

ſ.

- 8. Bridge Networks AC and DC Bridges
- 9. Dynamics of Sensors/Transducers
 - (a) Temperature
 - (b) Pressure
 - (c) Displacement
 - (d) Optical
 - (e) Strain
 - (f) Flow
- 10. Power and Energy Measurement
- 11. Signal Conditioning
 - (a) Instrumentation Amplifier
 - (b) Analog –Digital and Digital–Analog converters (ADC and DAC's)

TOTAL: 45 PERIODS

S.No.	NAME OF THE EQUIPMENT	Qty.
CONT	ROLSYSTEMS:	
1	PID controller simulation and learner kit	1 No.
2	Digital storage Oscilloscope for capturing transience	1 No.
	Personal Computer with control system simulation packages	10
	r ersonal computer with control system simulation packages	Nos.
3	Lag and Lead Compensators learner kit	1 No.
4	CRO 30MHz	1 No.
5	2 MHz Function Generator	1 No.
6	Position Control Systems Kit (with manual)	1 No.
	Tacho Generator Coupling set	
7	AC Synchro transmitter & receiver	1 No.
8	Sufficient number of Digital multi meters, speed and torque sensors	
INST	RUMENTATION:	
9	R, L, C Bridge kit (with manual)	1 No.
10	a) Electric heater	1 No.
	Thermometer	1 No.
	Thermistor (silicon type) RTD nickel type	1 No.
	b) 30 psi Pressure chamber (complete set)	1 No.
	Current generator (0 – 20mA)	1 No.
	Air foot pump (with necessary connecting tubes).	1 No.
	 LVDT 20mm core length movability type 	1 No.
	CRO 30MHz.	1 No.
	d) Optical sensor, Light source	1 No.
	e) Strain Gauge Kit with Handy lever beam	1 No.
	100 mm unights	10
	Toogm weights	Nos
	f) Flow measurement Trainer kit	1 No.
	(1/2 HP Motor, Water tank, Digital Milliammeter, complete set)	
11	Single phase Auto transformer	1 NO.
	vvatt-nour meter (energy meter)	1 NO.
40	Ammeter, Voltmeter, Rneostat, Stop watch, Connecting wires (3/20)	4
12		1 NO.
13	Analog – Digital and Digital –Analog converters (ADC and DACs)	1 NO.

OUTCOMES:

Course N	ame : C	Cour	se Code	e : 20EE5l	_1									
CO				(Course	Outco	mes				Exp	K –CO	POs	PSOs
C307.1	Analy	ze the	charac	teristics	of P,	PI and	PID co	ontrolle	rs expe	erimental	ly 1,2	K4	1,2,3,4,	1
	and a	naiyze	the stai	Sillity of	the cor	itrol sys	stem us	ing MA	ILAB.				9	
C307.2	Comp exper	ute th imental	e tran ly and	sfer fu analyz	unction e the r	of a espons	Field se of La	contro ag, Lea	olled E ad and	C moto Lag-Lea	or 3,4 ad	K3	1,2,3,9	1
	Comp	ensato	rs.											
C307.3	Analy	ze the	e trar	nsient	m 5,6	K4	1,2,3,4,	1						
	exper	imental	ly and	analyze	the C	haracte	eristics of	of Sync	hro -Tr	ansmitte	r-		9	
	Recei	ver.						-						
C307.4	Use M	1ATLAE	3 for the	e Simul	ation of	Contro	ol Syste	ems.			7	K3	1,2,3,9	1
C307.5	Analy:	ze the	basic	concep	ots of	bridge	networ	ks and	l to an	alyze th	ne 8,9	K4	1,2,3,4,	1
	Dynar	nics of	Sensor	s/Trans	sducers	5.				-			9	
C307.6	Meas	ure the	Powe	er and	Energy	y expe	rimenta	ally and	d analy	ze sign	al 10,11	K4	1,2,3,4,	1
	condit	tioning	circuits.		_			-	-	_			9	
						CO	-PO Ma	apping						
со	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C307.1	3	3	2	1		-	-	-	2#	-	-	-	2	-
C307.2	3	2	1	-	-	-	-	-	2#	-	-	-	2	-
C307.3	3	3	2	1	-	-	-	-	2#	-	-	-	2	-
C307.4	3	2	1	-	-	-	-	-	2#	-	-	-	2	-
C307.5	3	3	2	1	-	-	-	-	2#	-	-	-	2	-
C307.6	3	3	2	1	-	-	-	-	2#	-	-	-	2	-

20EE5L2MICROPROCESSORS AND MICROCONTROLLERSLTPCLABORATORY0031.5

OBJECTIVES:

- To perform simple arithmetic operations using assembly language program and study the addressing modes & instruction set of 8086 & 8051.
- To write an assembly language program to convert Analog input to Digital output and Digital input to Analog output.
- To perform interfacing experiments with µP8086.

PRE-REQUISITE:

Course Code: 20EE301. Course Name: Digital Logic Circuits.

LIST OF EXPERIMENTS:

8086 Programs using kits:

- 1. Basic arithmetic and Logical operations.
- 2. Move a data block without overlap.
- 3. Code conversion, decimal arithmetic and Matrix operations.
- 4. Floating point operations, string manipulations, sorting and searching.
- 5. Counters and Time Delay.

Peripherals and Interfacing Experiments:

- 6. Traffic light controller.
- 7. Stepper motor control.
- 8. Key board and Display.
- 9. Serial interface and Parallel interface.
- 10. A/D and D/A interface and Waveform Generation.

8051 Experiments using kits:

- 11. Basic arithmetic and Logical operations.
- 12. Square and Cube program, Find 2's complement of a number.

TOTAL: 45 PERIODS

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

S.No.	NAME OF THE EQUIPMENT	Qty.
1.	8086 Microprocessor Trainer with Power Supply	15 Nos
2.	8051 Micro Controller Trainer Kit with power supply	15 Nos
3.	8255 Interface boards	5 Nos
4.	8251 Interface boards	5 Nos
5.	8259 Interface boards	5 Nos
6.	8279 Keyboard / Display Interface boards	5 Nos
7.	8254 /8253 Interface boards	5 Nos
8.	ADC and DAC cards	5 Nos
9.	Stepper Motor with Controllers	4 Nos
10.	Traffic Light Control Systems	4 Nos

Course N	Course Name : Microprocessors And Microcontrollers Laboratory										Cour	Course Code : 20EE5L2			
CO				C	ourse	Outcor	mes				Exp	K –CO	POs	PSOs	
C308.1	Devel	lop an	asser	nbly la	anguage	e prog	ram fo	or arith	nmetic,	Logica	1,2	K3	1,2,3,5,6,9	1,2	
	operations using 8086 processor also Move a data block without														
	overlap.														
C308.2	Develop program for code conversion, decimal arithmetic, Matrix 3,4 K3 1,2,3,5,6,9 1,												1,2		
	operations and Floating point operations.														
C308.3	Devel	op pro	gram	for Co	unters	and T	ime D	elay ai	nd Tra	ffic light	t 5,6	K3	1,2,3,5,6,9	1,2	
	controller.														
C308.4	Devel	op pro	grams	for seria	al comn	nunicat	ion and	Stepp	er moto	or contro	7,8	K3	1,2,3,5,6,9	1,2	
C308.5	Demo	nstrate	the pr	ogram	of Ser	ial inte	rface, F	Parallel	interfa	ce, A/D	9,10	K3	1,2,3,5,6,9	1,2	
	D/A in	iterface	and W	aveforr	n Gene	ration									
C308.6	Devel	op an	asser	nbly la	anguage	e prog	ram fo	or arith	nmetic,	Logica	11,12	K3	7,8,10,11	2	
	opera	tions, S	Square	and C	Cube p	rogram	, Find	2's co	mpleme	ent of a	1				
	numb	er usino	a 8051	microco	ontrolle	r.			•						
			5			со	-PO Ma	apping							
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
C308.1	3	2	1	-	1	1	-	-	2	-	-	-	2	1	
C308.2	3	2	1	-	1	1	-	-	2	-	-	-	2	1	
C308.3	3	2	1	-	1	1	-	-	2	-	-	I	2	1	
C308.4	3	2	1	-	1	1	-	-	2	-	-	-	2	1	
C308.5	3	2	1	-	1	1	-	-	2	-	-	-	2	1	
C308.6	-	-	-	-	-	-	2#	2#	-	2#	2#	-	-	1	

20HS4L2 PROFESSIONAL COMMUNICATION LABORATORY L T P C 0 0 2 1

OBJECTIVES:

- This course is framed for imparting practical approach in learning and enhancing communication skill among engineering students.
- Students will be able to identify appropriate expressions in speaking and writing.
- Students will also be able to understand this style and perfection of language in reading and listening various contexts of engineering and technology.
- The course will benefit to the students to gain confidence for every day communication, technical presentation, aptitude test and interviews.

PRE-REQUISITE:

Course Code: 20HS101 Course Name: English for Technical Communication

UNIT I LISTENING

Listen And Take Notes of Lecture, Talks on Engineering and Technology, Developing effective listening skills, Barriers to Effective listening, Listening Self-Introduction Videos.

UNIT II SPEAKING

Self-Introduction, Introduce oneself to the audience, Sharing memorable incidents, Individual presentation practice, Introduction to Group Discussion, GD strategies- activities to improve GD skills.

UNIT III READING

Reading Online Blogs, Reading Advertisement in Online, Newspaper archives to reading, Reading FAQ's related to job Interview, General awareness of current affairs.

UNIT IV WRITING

Process Description, Narrating experience, Creating Email blogs, Review Writing – Books, Movies And Journals, Job Application Letter, Resume Writing.

UNIT V SUMMARIZED ACTIVITIES

Reading -cloze exercise, Identifying redundant words, Jargon words, Foreign words, Technical terms Writing- Error free sentence, Essay writing on various levels – basic, middle and advanced, Preparing job application letter and Resume Speaking -Face to face conversation on specific topics, Answering Interview Questions, Panel Interview, Participating in Group Discussion, Technical Presentation.

TOTAL: 30 PERIODS

TEXT BOOKS:

1. E. Suresh Kumar et al. Communication for Professional Success. Orient Black swan: Hyderabad, 2015

6

6

6

6

REFERENCES:

- 1. Butterfield, Jeff Soft Skills of Everyone. Cengage Learning: New Delhi, 2015
- 2. "Interact English Lab Manual for Undergraduate Students", Orient BlackSwan: Hyderabad, 2016.
- 3. Raman, Meenakshi and Sangeetha Sharma. Professional Communication. Oxford University Press: Oxford, 2014.
- 4. S. Hariharanetal. Soft Skills. MJP Publishers: Chennai, 2010.

Course Name : PROFESSIONAL COMMUNICATION LABORATORY											Cour	se Code	e: 20HS4L2	2
CO				Unit	K –CO	POs	PSOs							
C309.1	Expres	ss idea	s and c	1,2	K3	9,10,12	-							
C309.2	Involv	e inter-	persona	al comn	3,4	K3	9,10,12	-						
C309.3	Face i	nterviev	ws conf	fidently	and res	spond i	n prope	er langu	age abi	ility	5,6	K3	9,10,12	-
C309.4	Partici	pate in	group	discus	sion an	d share	e innova	ative id	eas in t	echnica	7,8	K3	9,10,12	-
	enviro	nments												
C309.5	Adapt	multi-n	ational	exposu	ire on e	employr	nent				9,10	K3	9,10,12	-
C309.6	Maste	r all-ro	und c	ompete	ncy in	delive	ering a	pt com	nmunica	ation for	· 1-10	K3	9,10,12	-
	emplo	yability												
						CO	-PO Ma	apping						
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C309.1	-	-	-	-	-	-	-	-	2	3	-	3	-	-
C309.2	-	-	-	-	-	-	-	-	2	3	-	3	-	-
C309.3	-	-	-	-	-	-	-	-	3	3	-	3	-	-
C309.4	-	-	-	-	-	-	-	-	2	3	-	3	-	-
C309.5	-	-	-	-	-	-	-	-	3	3	-	3	-	-
C309.6	-	-	-	-	-	-	-	-	2	3	-	3	-	-

9

9

q

9

9

TOTAL: 45 PERIODS

To model power-frequency dynamics and to design power-frequency controller.

POWER SYSTEM OPERATION AND CONTROL

- To model reactive power-voltage interaction and the control actions to be implemented for maintaining the voltage profile against varying system load.
- To study the economic operation of power system. ٠

To have an overview of power system operation and control.

To discuss about SCADA and its application for real time operation and control of power systems.

PRE-REQUISITE:

20EE602

OBJECTIVES:

Course Code: 20EE501, 20EE402 Course Name: Power System Analysis, Transmission and Distribution

UNIT-I INTRODUCTION

An overview of power system operation and control - system load variation - load characteristics load curves and load-duration curve - load factor - diversity factor - Importance of load forecasting and guadratic and exponential curve fitting techniques of forecasting - plant level and system level controls.

UNIT-II **REAL POWER - FREQUENCY CONTROL**

Basics of speed governing mechanism and modeling - speed-load characteristics - load sharing between two synchronous machines in parallel - control area concept - LFC control of a singlearea system - static and dynamic analysis of uncontrolled and controlled cases - two-area system - modeling - static analysis of uncontrolled case - tie line with frequency bias control - state variable model - integration of economic dispatch control with LFC.

UNIT-III **REACTIVE POWER-VOLTAGE CONTROL**

Generation and absorption of reactive power - basics of reactive power control - excitation systems - modeling - static and dynamic analysis - stability compensation - methods of voltage control: tapchanging transformer, SVC (TCR + TSC) and STATCOM – secondary voltage control.

UNIT COMMITMENT AND ECONOMIC DISPATCH UNIT- IV

Formulation of economic dispatch problem – I/O cost characterization – incremental cost curve – coordination equations without and with loss (No derivation of loss coefficients) - solution by direct method and λ -iteration method - statement of unit commitment problem – priority-list method – forward dynamic programming.

UNIT-V COMPUTER CONTROL OF POWER SYSTEMS

Need for computer control of power systems - concept of energy control centre - functions system monitoring - data acquisition and control - system hardware configuration - SCADA and EMS functions - network topology - state estimation - WLSE - Contingency Analysis - state transition diagram showing various state transitions and control strategies - Recent trends in Contingency Analysis.

32

KLNCE UG EEE R2020 (AY 2021-2022)

С 3 0 0 3

Ρ L т

- 1. Olle.I.Elgerd, 'Electric Energy Systems theory An introduction', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 34th reprint, 2010.
- 2. Allen. J. Wood and Bruce F. Wollenberg, 'Power Generation, Operation and Control', John Wiley& Sons, Inc., 2016.

REFERENCES:

- 1. Abhijit Chakrabarti, Sunita Halder, 'Power System Analysis Operation and Control', PHI learning Pvt. Ltd., New Delhi, Third Edition, 2010.
- 2. Kundur P., 'Power System Stability and Control', Tata McGraw Hill Education Pvt. Ltd., New Delhi,10th reprint, 2010.
- 3. N.V.Ramana, 'Power System Operation and Control', Pearson, 2011.

Course Name : POWER SYSTEM OPERATION AND CONTROL											Cour	se Code	: 20EE602	2
CO				C	ourse	Outcor	nes				Unit	K –CO	POs	PSOs
C310.1	Apply	electric	cal eng	ineering		K3	1,2,3	1,2						
	distrib	ution pa	aramet	ers.										
C310.2	Analy	ze the	modeli	ng for	t II	K4	1,2,3,4	1,2						
	contro	oller												
C310.3	Expla	in vario	us type	es of ex	citatior	n syste	m and	derive	the mo	deling of	f III	K2	1,2	1,2
	AVR													
C310.4	Solve	the Un	it Comr	nitmen	t proble	ms usii	ng prior	ity met	hod		IV	K3	1,2,3	1,2
C310.5	Solve	the Eco	onomic	Dispat	ch prob	lems					IV	K3	1,2,3	1,2
C310.6	Expla	in the	data a	cquisiti	on and	contro	ol in p	ower s	systems	and to) V	K3	1,2,3	1,2
	analyz	ze the c	continge	ency of	power	system								
						CO	-PO Ma	apping						
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C310.1	3	2	1	-	-	-	-	-	-	-	-	-	2	2
C310.2	3	3	2	1	-	-	-	-	-	-	-	-	3	2
C310.3	2	1	-	-	-	-	-	-	-	-	-	-	1	1
C310.4	3	2	1	-	-	-	-	-	-	-	-	-	2	2
C310.5	3	2	1	-	-	-	-	-	-	-	-	-	2	2
C310.6	3	2	1	-	-	-	-	-	-	-	-	-	2	2
C310	3	2	1	-	-	-	-	-	-	-	-	-	2	2

20IT301	OBJECT ORIENTED PROGRAMMING	L	Т	Ρ	С
		3	0	0	3

OBJECTIVES:

- To understand basic principle of Object-Oriented Programming
- To understand the characteristics of java and basics of java programming tool.
- To know the principles of inheritance and interfaces
- To define exceptions and use I/O streams
- To develop a java application with threads and generics classes
- To design and build simple Graphical User Interfaces

PRE-REQUISITE:

Course code : 20CS201 Course Name : Programming in C

UNIT-I INTRODUCTION TO OOP AND JAVA FUNDAMENTALS

Introduction to Object Oriented Programming -Differences between Structure programming and OOPS-Characteristics of Java - The Java Environment -Java Source File -Structure -Compilation. Fundamental Programming Structures in Java - Defining classes in Java constructors, methods -access specifiers - static members -Comments, Data Types, Variables, Operators, Control Flow, Arrays, Packages - JavaDoc comments, finalize method, Automatic Garbage Collection.

INHERITANCE AND INTERFACES UNIT-II

Inheritance - the Object class - abstract classes and methods- final methods and classes -Interfaces –differences between classes and interfaces and extending interfaces - Object cloning, Reflection, Proxies -inner classes, Array Lists - Strings

UNIT-III **EXCEPTION HANDLING AND I/O**

Exceptions - exception hierarchy - throwing and catching exceptions - built-in exceptions, creating own exceptions, Assertions, logging, Stack Trace Elements. Input / Output Basics - Streams -Byte streams and Character streams – Reading and Writing Console – Reading and Writing Files-Sequential Access file and Random Access file.

UNIT-IV MULTITHREADING AND GENERIC PROGRAMMING

Differences between multi-threading and multitasking, thread life cycle, creating threads, synchronizing threads, Inter-thread communication, daemon threads, thread groups. Generic Programming – Generic classes – generic methods – Inheritance & Generics – Reflection & Generics-Bounded Types – Restrictions and Limitations.

EVENT DRIVEN PROGRAMMING UNIT-V

Graphics programming - Frame - Components - working with 2D shapes - Using color, fonts, and images - Basics of event handling - event handlers - adapter classes - actions - mouse events -AWT event hierarchy - Introduction to Swing – layout management - Swing Components – Text Fields, Text Areas - Buttons- Check Boxes - Radio Buttons - Lists- choices- Scrollbars -Windows - Menus - Dialog Boxes- Case Study: Design an application for automating the file processing by using the java swing with mysgl database.

TOTAL: 45 PERIODS

9

9

9

9

- 1. Herbert Schildt, "Java The complete reference", 9th Edition, McGraw Hill Education, 2017.
- 2. Cay S. Horstmann, Gary cornell, "Core Java Volume –I Fundamentals", 9th Edition, Prentice Hall, 2013.
- 3. E. Balagurusamy, "Programming with Java", 6th Edition, McGraw Hill Education, 2019.

REFERENCES:

- 1. Paul Deitel, Harvey Deitel, "Java SE 8 for programmers", 3rd Edition, Pearson, 2015.
- 2. Steven Holzner, "Java 2 Black book", Dreamtech press, 2011.
- 3. Timothy Budd, "Understanding Object-oriented programming with Java", Updated Edition, Pearson Education, 2000.

OUTCOMES:

Course Name : OBJECT ORIENTED PROGRAMMING												se Code	: 20IT301	
CO				C	Unit	K –CO	POs	PSOs						
C311.1	Realiz Progra	ze the C amming	Object-O g tool.	Drienteo	I	K3	1,2,3	1						
C311.2	Apply	the cor	ncepts	of inher		K3	1,2,3	1						
C311.3	Const	ruct jav	a exce	ptions a	and I/O	stream	s					K3	1,2,3	1
C311.4	Illustra	ate mul	tithread	conce	pts and	generi	cs in ja	va			IV	K3	1,2,3	1
C311.5	Desig	n and c	levelop	interac	tive jav	a appli	cation ι	using A	WΤ		V	K3	1,2,3	1
C311.6	Desig	n and c	levelop	interac	tive jav	a appli	cation ι	using S ^v	wing		V	K3	1,2,3	1
						CO	-PO Ma	apping						
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C311.1	3	2	1	-	-	-	-	-	-	-	-	-	3	-
C311.2	3	2	1	-	-	-	-	-	-	-	-	-	3	-
C311.3	3	2	1	-	-	-	-	-	-	-	-	-	3	-
C311.4	3	2	1	-	-	-	-	-	-	-	-	-	3	-
C311.5	3	2	1	-	-	-	-	-	-	-	-	-	3	-
C311.6	3	2	1	-	-	-	-	-	-	-	-	-	3	-

20EE6L1

POWER ELECTRONICS AND DRIVES L T LABORATORY 0 0

L T P C D 0 3 1.5

OBJECTIVES:

- To examine the characteristics of various power electronics devices.
- To outline the performance characteristics of Converter, chopper, AC voltage controller, inverter and Switched mode power converter.
- To gain practical experience on converter, chopper fed dc motor drives.
- To gain practical experience on Inverter fed induction motor drives.
- To simulate the basic topological power converter circuits.

PRE-REQUISITE:

Course Code: 20EE3L1 Course Name: Electronics Laboratory

LIST OF EXPERIMENTS:

- 1. Characteristics of SCR and Gate Pulse Generation of R, RC and UJT.
- 2. Characteristics of TRIAC and IGCT.
- 3. Characteristics of MOSFET and IGBT.
- 4. Single phase AC to DC Semi converter / Simulation of semi converters.
- 5. Single phase AC to DC fully controlled Converter / Simulation of full converters.
- 6. Step down and step up MOSFET based choppers / Simulation of DC-DC converters.
- 7. Single phase AC Voltage controller / Simulation of AC voltage controllers.
- 8. Switched mode power converter.
- 9. IGBT based Single phase PWM inverter.
- 10. IGBT based Speed control of three phase PWM inverter fed Induction motor.
- 11. Micro controller based speed control of Converter and Chopper fed DC motor.

TOTAL: 45 PERIODS

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

S.No.	NAME OF THE EQUIPMENT	Qty.												
1.	Device characteristics(for SCR, MOSFET, TRIAC, IGCT and IGBT kit with	2 Nos.												
	built-in / discrete power supply and meters)	each												
2.	Single phase SCR based half controlled converter and fully controlled	2 Nos.												
	converter along with built-in / separate / firing circuit / module and meter	each												
3.	MOSFET based step up and step down choppers (Built in / Discrete)	1 No.												
4.	IGBT based single phase PWM inverter module / Discrete Component	2 Nos.												
5.	IGBT based three phase PWM inverter module / Discrete Component	2 Nos.												
6.	Switched mode power converter module / Discrete Component	2 Nos.												
7.	SCR & TRIAC based 1 phase AC controller along with lamp or rheostat load	2 Nos.												
8.	Digital Storage Oscilloscope	5 Nos.												
9.	Cathode ray Oscilloscope	5 Nos.												
10.	Multimeter	5 Nos.												
11.	Work table	10 Nos.												
12.	DC and AC meters of required ranges	10 value												
Course Na	me : Po	ower El	ectron	ics An	d Drive		Cour	se Code	e : 20EE6L	1				
-----------	--	---	--------------------	---------------------	----------	--------------------	--------------------	---------------------	------------------	-----------	---------------	-------	-----------	------
CO				C	ourse	Outcor	mes				Exp	K –CO	POs	PSOs
C316.1	Cond RC a	uct on nd UJT	experir triaaer	nent to ina circ	gener	ate the differe	gate p ntiate t	oulse of he VI c	f SCR haracte	using R,	, 1,2, f 3	K3	1,2,3,9	1,2
	powe	r electro	onics d	evices.										
C316.2	Cond	uct on	experin	nent to	designed	4,5	K4	1,2,3,4,9	1,2					
	single with F	with R and RL load using MATLAB simulation tool.												
C316.3	Cond	uct on	experii	nent to	analy	ze the	perform	nance o	of the c	designed	6	K4	1,2,3,4,9	1,2
	siep	step down and step up MOSFET based choppers using MATLAB simulation tool.												
C316.4	Conduct on experiment to analyze the performance of the design										7,8	K4	1,2,3,4,9	1,2
	AC –AC converters and Switched mode power converter using													
C316.5	Cond	uct on	experi	ment t	o show	the f	requen	cv resp	onse d	of single	9,10	K3	1,2,3,9	1,2
	phase	e PWM	inverte	r and ir	verter	fed indu	uction n	notor di	ive.	0				,
C316.6	Demo	onstrate	the sp	eed co	ntrol of	the giv	en Mic	ro cont	roller ba	ased DC	11	K3	1,2,3,9	1,2
	drive	by con	ducting	suitabl	e expei	iment.								
						00	-PO Ma	apping						
CO	P01	PO2	PO3	P04	PO5	P06	P07	P08	P09	PO10	P011	PO12	PS01	PSO2
C316.1	3	2	1	-	-	-	-	-	2#	-	-	-	2	2
C316.2	3	3	2	1	1	-	-	-	2#	-	-	-	2	2
C316.3	3	3	2	1	1	-	-	-	2#	-	-	-	2	2
C316.4	3	3	2	1	1	-	-	-	2#	-	-	-	2	2
C316.5	3	2	1	-	-	-	-	-	2#	-	-	-	2	2
C316.6	3	2	1	-	-	-	-	-	2#	-	-	-	2	2

20EE6L2	MINI PROJECT-I	L	Т	Ρ
		0	0	4

OBJECTIVES:

- To develop the students own innovative prototype ideas.
- To train the students in preparing mini project reports and examination.

PRE-REQUISITE: NIL

The students in a group of 2 to 4 works on a topic approved by the head of the department and prepare a comprehensive mini project report after completing the work to the satisfaction. The progress of the project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A mini project report is required at the end of the semester. The mini project work is evaluated based on oral presentation and the mini project report jointly by external and internal examiners constituted by the Head of the Department.

TOTAL: 60 PERIODS

C 2

OUTCOMES:

AT THE END OF THE COURSE, LEARNERS WILL BE ABLE TO:

• On Completion of the mini project work students will be in a position to take up their Final year project work and find solution by formulating proper methodology.

OUTCOMES:

Course Na	me : Ml	INI PRO	JECT	-1							Cour	se Code	: 20EE6L	2
CO				C	ourse	Outco	mes				Exp	K –CO	POs	PSOs
C317.1	Identif	fy and a	apply t	he real	world	and so	cietal ir	nportar	ice pro	blems ir	1 -	K4	1-12	1,2
	the El	ectrical	and its	allied										
C317.2	Identif	fy, ana	lyze, d	design,	impler	ment a	nd hai	ndle pro	ototype	projects	s -	K4	1-12	1,2
	with a	a comp	olete ai	nd orga	nized s	olution	method	dologies	S					
C317.3	Apply	moder	n engin	eering	tools fo	r solutio	on				-	K4	1-12	1,2
C317.4	Contri	ibute a	s an in	dividua	l or in	a team	ו in de	velopm	ent of t	technica	I -	K4	1-12	1,2
	projec	ts												
C317.5	Devel	op effe	ective	commu	nication	n skills	for p	resenta	ition of	f projec	t -	K4	1-12	1,2
	relate	related activities												
C317.6	Prepa	are repo	orts and	l exami	nation f	followin	g profe	ssional	ethics		-	K4	1-12	1,2
						CO	-PO Ma	apping						
CO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C317.1	3	3	2	1	1	1	1	1	1	1	1	1	2	2
C317.2	3	3	2	1	1	1	1	1	1	1	1	1	2	2
C317.3	3	3	2	1	1	1	1	1	1	1	1	1	2	2
C317.4	3	3	2	1	1	1	1	1	1	1	1	1	2	2
C317.5	3	3	2	1	1	1	1	1	1	1	1	1	2	2
C317.6	3	3	2	1	1	1	1	1	1	1	1	1	2	2

20CS6L3	OBJECT ORIENTED AND JAVA PROGRAMMING	L	Т	Р	С
	LABORATORY	0	0	3	1.5

OBJECTIVES:

- To build software development skills using java programming for real-world applications.
- To understand and apply the concepts of classes, packages, interfaces, array list, exception handling and file processing.
- To develop applications using generic programming and event handling.

PRE-REQUISITE:

Course code : 20CS201 Course Name : Programming in C

LIST OF EXPERIMENTS:

- a) Write a Java program that checks whether a given string is a palindrome or not.
 b) Write a Java program for sorting list of names. Read input from command line
- 2. Develop a Java application to generate Electricity bill. Create a class with the following members: Consumer no., consumer name, previous month reading, current month reading, type of EB connection (i.e domestic or commercial). Compute the bill amount using the following tariff.

If the type of the EB connection is domestic, calculate the amount to be paid as follows:

First 100 units	Rs. 1.00 per unit
101-200 units	Rs. 2.50 per unit
201 -500 units	Rs. 4.00 per unit
> 501 units	Rs. 6.00 per unit

If the type of the EB connection is commercial, calculate the amount to be paid as follows:

First 100 units	Rs. 2.00 per unit
101-200 units	Rs. 4.50 per unit
201 -500 units	Rs. 6.00 per unit
> 501 units	Rs. 7.00 per unit

- 3. Develop a java application to implement currency converter (Dollar to INR, EURO to INR, Yen to INR and vice versa), distance converter (meter to KM, miles to KM and vice versa), time converter (hours to minutes, seconds and vice versa) using packages.
- 4. Develop a java application with Employee class with Emp_name, Emp_id, Address, Mail_id, Mobile_no as members. Inherit the classes, Programmer, Assistant Professor, Associate Professor and Professor from employee class. Add Basic Pay (BP) as the member of all the inherited classes with 97% of BP as DA, 10 % of BP as HRA, 12% of BP as PF, 0.1% of BP for staff club fund. Generate pay slips for the employees with their gross and net salary.
- 5. Design a Java interface for ADT Stack. Implement this interface using array. Provide necessary exception handling in both the implementations.
- 6. Write a Java Program to create an abstract class named Shape that contains two integers and an empty method named print Area(). Provide three classes named Rectangle,

Triangle and Circle such that each one of the classes extends the class Shape. Each one of the classes contains only the method print Area () that prints the area of the given shape.

- 7. Write a Java program to implement user defined exception handling.
- 8. Write a Java program that reads a file name from the user, displays information about whether the file exists, whether the file is readable, or writable, the type of file and the length of the file in bytes.
- 9. Write a java program that implements a multi-threaded application that has three threads. First thread generates a random integer every 1 second and if the value is even, second thread computes the square of the number and prints. If the value is odd, the third thread will print the value of cube of the number.
- 10. Write a java program to find the maximum value from the given type of elements using a generic function.

TOTAL: 45 PERIODS

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

Software Requirement :

• JDK8.0 / Net beans 11

Course Na	me : Ol	oject O	rientec	and J	ava Pro	ogram	ning L	aborato	ory		Cour	se Code	e : 20CS6L3	3
CO				C	ourse	Outcor	mes				Exp	K –CO	POs	PSOs
C318.1	Devel make	op and use of	l imple classes	ment J s, packa	ava pr ages.	ograms	s for si	mple a	pplicati	ons that	1,2	К3	1,2,3,5,8	1,2
C318.2	Devel	op and	implem	nent Jav	va prog	rams w	ith inhe	eritance	and in	terfaces.	3,4	K3	1,2,3,5,8	1,2
C318.3	Devel	op Java	a progra	ams to	implem	ent fun	ction po	olymorp	hism.		5,6	K3	1,2,3,5,8	1,2
C318.4	Devel	op simp	ole java	progra	ms with	n use o	f files a	nd exce	ptions.		7,8	K3	1,2,3,5,8	1,2
C318.5	Devel	op simp	ole java	progra	ms by	implem	enting	multithr	ead co	ncepts.	9,10	K3	1,2,3,5,8	1,2
C318.6	Devel	op simp	ole java	progra	m by u	sing ge	neric c	oncepts	5.		11,12	K3	1,2,3,5,8	1,2
						CO	-PO Ma	apping						
CO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C318.1	3	2	1	-	1	-	-	1	-	-	-	-	3	2
C318.2	3	2	1	-	1	-	-	1	-	-	-	-	3	2
C318.3	3	2	1	-	1	-	-	1	-	-	-	-	3	2
C318.4	3	2	1	-	1	-	-	1	-	-	-	-	3	2
C318.5	3	2	1	-	1	-	-	1	-	-	-	-	3	2
C318.6	3	3	1	-	1	-	-	1	-	-	-	-	3	3

PROFESSIONAL ELECTIVE – I

20EEV11

POWER QUALITY

LT

L T P C 3 0 0 3

OBJECTIVES:

- To understand the various power quality issues.
- To understand the causes, impacts and mitigation of Voltage sag and interruptions in power system.
- To understand the causes, impacts and mitigation of over voltages in power system with PSCAD and EMTP.
- To understand the concept of harmonics in power system with their causes, effects and control techniques.
- To understand the various types of conventional and modern power quality monitoring devices/methods.

PRE-REQUISITE: NIL

UNIT - I INTRODUCTION

Terms and definitions – Overloading – Under voltage – Sustained interruption - Sags and Swells – Waveform distortion – Total Harmonic Distortion (THD) – Computer Business Equipment Manufacturers Associations (CBEMA) curve.

UNIT - II VOLTAGE SAGS AND INTERRUPTIONS

Sources of sags and interruptions – Estimating voltage sag performance – Motor starting sags – Estimating the sag severity – Mitigation of voltage sags – Active series compensators – Static transfer switches and fast transfer switches.

UNIT - III OVERVOLTAGES

Sources of over voltages – Capacitor switching – Lightning – Ferro resonance – Mitigation of voltage swells – Surge arresters – Low pass filters – Power conditioners – Lightning protection – Shielding – Line arresters – Protection of transformers and cables – Computer analysis tools for transients – PSCAD and EMTP.

UNIT - IV HARMONICS

Harmonic distortion – Voltage and current distortion – Harmonic indices – Harmonic sources from commercial and industrial loads – Locating harmonic sources – Power system response characteristics – Resonance – Harmonic distortion evaluation – Devices for controlling harmonic distortion – Passive filters – Active filters – IEEE and IEC standards.

UNIT - VPOWER QUALITY MONITORING AND CUSTOM POWER DEVIES9Power line disturbance analyzer - Harmonic/Spectrum analyzer - Flicker meters - Rectifiersupported DVR - DC Capacitor supported DVR - DVR Structure - voltage Restoration - SeriesActive Filter - Unified power quality conditioner.

TOTAL: 45 PERIODS

9

9

9

- 1. R.C. Duggan, "Power Quality", McGraw-Hill Education, 2012.(2nd edition)
- 2. A.J. Arrillga, "Power system harmonics", Wiley, 2003 (2nd edition)

REFERENCES:

- 1. G.T.Heydt, "Electric Power Quality", Stars in a Circle Publications, 1994 (2nd edition)
- 2. Derek A. Paice, "Power Electronic Converter Harmonics", Wiley-IEEE Press-Ist Edition-1999

OUTCOMES:

Course Na	me : PO	OWER	QUALI	TY		Cour	se Code	: 20EEV1	1					
CO				C	ourse	Outcor	mes				Unit	K –CO	POs	PSOs
C306V1.1	Expla and P	in pow ower q	er qual uality s	ity dist tandard	urbance I.	es, the	ir caus	es, det	rimenta	l effects	; I	K3	1,2,3	1,2
C306V1.2	Descr	ibe the	impact	of volta	age sag	g and in	terrupti	ions in j	power s	systems.	II	K3	1,2,3	1,2
C306V1.3	Analy	ze the o	over vo	ltage pl		K4	1,2,3,4	1,2						
C306V1.4	Descr	ibe the	impact	of Har	monics		IV	K3	1,2,3	1,2				
C306V1.5	Expla quality	in the y in pov	differer ver sys	nt types tem.	s of mo	onitoring	g devic	es/met	hods fo	or powe	V	K3	1,2,3	1,2
C306V1.6	Discu of pov	ss the ver qua	differer lity in p	t types	of cus ystem.	tom po	wer de	vices fo	or enha	ncemen	V	K3	1,2,3	1,2
						CO	-PO Má	apping						
CO	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
C306V1.1	3	2	1	-	-	-	-	-	-	-	-	-	2	2
C306V1.2	3	2	1	-	-	-	-	-	-	-	-	-	2	2
C306V1.3	3	3	2	1	-	-	-	-	-	-	-	-	2	2
C306V1.4	3	3 2 1										-	2	2
C306V1.5	3	2	1	-	-	-	-	-	-	-	-	-	2	2
C306V1.6	3	2	1	-	-	-	-	-	-	-	-	-	2	2

20EEV12

MODERN POWER CONVERTERS

L T P C 3 0 0 3

OBJECTIVES:

- To impart knowledge on the Switched mode power supplies.
- To understand the performance analysis and operation of the AC to DC converter and DC to AC converter.
- To study the concept of Matrix Converter.
- To introduce the Soft switched converters.
- To impart knowledge on the Switched mode power supplies.

PRE-REQUISITE: NIL

UNIT - I SWITCHED MODE POWER SUPPLIES (SMPS)

DC Power supplies and Classification - Switched mode dc power supplies - with and without isolation - single and multiple outputs - Closed loop control and regulation - Design examples on converter and closed loop performance.

UNIT - II AC-DC CONVERTERS

Switched mode AC-DC converters - Synchronous rectification - single and three phase topologies - switching techniques - high input power factor - Reduced input current harmonic distortion - Improved efficiency - with and without input-output isolation - Performance indices design examples.

UNIT - III DC-AC CONVERTERS

Multi-level Inversion – concept - classification of multilevel inverters - Principle of operation - main features and analysis of Diode clamped - Flying capacitor and cascaded multilevel inverters - Modulation schemes.

UNIT - IV AC-AC CONVERTERS WITH AND WITHOUT DC LINK

Matrix converters - Basic topology of matrix converter - Commutation – current path - Modulation techniques - scalar modulation - indirect modulation - Matrix converter as only AC-DC converter - AC-AC converter with DC link - topologies and operation - with and without resonance link - converter with dc link converter - Performance comparison with matrix converter with DC link converters.

UNIT - V SOFT-SWITCHING POWER CONVERTERS

Soft switching techniques – ZVS – ZCS - quasi resonance operation - Performance comparison hard switched and soft switched converters - AC-DC converter - DC-DC converter - DC-AC converter - Resonant DC power supplies.

TOTAL: 45 PERIODS

9

9

9

9

- 1. Ned Mohan, T.M Undeland and W.P Robbin, "Power Electronics: converters, Application and design" John Wiley and sons. Wiley India edition, 2006.
- 2. M.H.Rashid, 'Power Electronics Handbook', Academic press, New York, 2001.
- 3. Fang Lin Luo and Hang Ye, 'Advanced DC/DC Converters', CRC Press, 2017.

REFERENCES:

- 1. Issa Batarseh, 'Power Electronic Circuits', John Wiley and Sons, Inc.2004.
- 2. Marian P.Kazmierkowski, R.Krishnan and Frede Blaabjerg, 'Control in Power Electronics-Selected Problem', Academic Press (Elsevier Science), 2002.
- 3. Frede Blaabjerg and Zhe Chen, 'Power Electronics for Modern Wind Turbines', Morgan and Claypool Publishers series, United States of America, 2006.
- 4. Krein Philip T, 'Elements of Power Electronics', Oxford University press, 2008.
- 5. Agarwal, 'Power Electronics: Converters, Applications, and Design', 3rd edition, Jai P,Prentice Hall, 2000.
- 6. L. Umanand, 'Power Electronics: Essentials & Applications', John Wiley and Sons, 2009.

Course Na	me : M	ODERN	I POWI	ER CO	NVERT	ERS					Cour	se Code	: 20EEV12	2
CO				C	ourse	Outco	mes				Unit	K –CO	POs	PSOs
C306V2.1	Explai	n the co	oncepts	s and w	orking	of Swite	ched m	ode dc	power s	supplies.	. I	K3	1,2,3	1,2
C306V2.2	Explai techni	n the v ques.	arious <i>i</i>	AC-DC	power	conver	ter circ	uits and	l their s	witching	II	К3	1,2,3	1,2
C306V2.3	Analyz	ze vario	us type	es of DO	III	K4	1,2,3,4	1,2						
C306V2.4	Desigr	n variou	is basio	c topolo	gy of N		IV	K3	1,2,3	1,2				
C306V2.5	Compa link.	are AC	-AC P	ower c	thout do	; IV	К3	1,2,3	1,2					
C306V2.6	Descri compa	ibe the are vari	operati ous typ	ing prin es of S	ciple of oft Swit	f soft s ched P	witching ower c	g powe onverte	r conve rs.	erter and	V	К3	1,2,3	1,2
						CO	-PO Ma	apping						-
CO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C306V2.1	3	2	1	-	-	-	-	-	-	-	-	-	2	2
C306V2.2	3	2	1	-	-	-	-	-	-	-	-	-	2	2
C306V2.3	3	3	2	1	-	-	-	-	-	-	-	-	2	2
C306V2.4	3	2	1	-	-	-	-	-	2	2				
C306V2.5	3	3	1	-	-	-	-	-	-	2	2			
C306V2.6	3	2	1	-	-	-	-	-	-	-	-	-	2	2

20EEV13	POWER ELECTRONIC CONVERTERS FOR	L	Т	Ρ	С
	ELECTRIC VEHICLE	3	0	0	3

OBJECTIVES:

- To understand the concept of Power electronic devices
- To study the operation, switching techniques and basics topologies of DC-DC Converter.
- To understand the operation of Controlled rectifiers and Inverters that can be used in electric vehicles
- To understand the operation of Power electronic based drives that can be used in electric vehicles
- To understand the control of hybrid and fuel cell vehicles
- To understand the concept of Power electronic devices

PRE-REQUISITE:

Course Code: 20EE302, 20EE304 Course Name: Electron Devices and Circuits. Electrical Machines – I

UNIT - I **BASIC POWER ELECTRONIC DEVICES**

Diodes – Thyristors - Bipolar Junction Transistors – Metal Oxide Semiconductor Field Effect Transistors - Insulated Gate Bipolar Transistors - Ultra capacitors.

UNIT - II DC/DC CONVERTER

Basic Principle of DC-DC Converter - Step-Down (Buck) Converter - Step-Up (Boost) Converter -Buck-Boost Converter - DC-DC Converters Applied in Hybrid Vehicle Systems - Isolated Buck DC–DC Converter - Four-Quadrant DC–DC Converter.

RECTIFIERS AND INVERTERS UNIT - III

Single-phase Diode Rectifiers - Three-phase Diode Rectifiers - Poly-phase Diode Rectifiers -Filtering Systems in Rectifier Circuits - High-frequency Diode Rectifier Circuits - Single-phase Voltage Source Inverters - Three-phase Voltage Source Inverters - Current Source Inverters -Closed-loop Operation of Inverters - Regeneration in Inverters - Multistage Inverters.

UNIT - IV ELECTRIC MOTOR DRIVES

DC motor speed control and braking - Chopper control based ac motor drives - cyclo-converter fed ac motor drives - slip power recovery scheme - four quadrant operation of electric drives.

CONTROL OF HYBRID AND FUEL CELL VEHICLES UNIT - V

Fuel Cell Vehicles - Power Electronics Requirements - Propulsion Motor Control Strategies - APU Control System in Series Hybrid Vehicles - Fuel Cell for APU Applications.

TOTAL: 45 PERIODS

9

9

9

9

- 1. Mehrdad Ehsani, Yimin Gao, Stefano Longo, Kambiz Ebrahimi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles", CRC Press, Third Edition, 2019
- 2. Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, Taylor & Francis Group, Third Edition 2021.

REFERENCES:

- 1. "Power Electronics", P.S.Bimbhra, Khanna publications, 2020.
- 2. "Thyristorised Power Controllers", G.K.Dubey, New Age international publishers, 2019.
- 3. "Power Electronic Converters Modeling and Control: with Case Studies", Seddik basha, Springer, 2018.

Course Nam	ne : POV	VER EL		Cour	se Code	: 20EEV1	3							
CO				C	ourse	Outco	mes				Unit	K –CO	POs	PSOs
C306V3.1	Expla electri	in the ic vehic	basics les.	of vari	ous po	table for		K2	1,2	1				
C306V3.2	Expla	in the o	peratio	n of DC	DC C	onverte	rs used	l in elec	tric ver	nicles	П	K2	1,2	1
C306V3.3	Expla	in the o	peratio	n of rec	tifiers a	and inve	erters u	sed in	electric	vehicles		K2	1,2	1
C306V3.4	Expla	in the v	arious l	DC mot	or drive	es suita	ble for	EV			IV	K2	1,2	1
C306V3.5	Expla	in the v	arious	AC mot	or drive	es suita	ble for	EV			IV	K2	1,2	1
C306V3.6	Expla	in the E	lectric	Propuls	ion uni	t of Ele	ctric ve	hicles			V	K2	1,2	1
						CO	-PO Ma	apping						
CO	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
C306V3.1	2	1	-	-	-	-	-	-	-	-	-	-	2	-
C306V3.2	2	1	-	-	-	-	-	-	-	-	-	-	2	-
C306V3.3	2	1	-	-	-	-	-	-	-	-	-	-	2	-
C306V3.4	2	1	-	-	-	-	-	-	-	-	-	-	2	-
C306V3.5	2	1	-	-	-	-	-	-	-	-	-	-	2	-
C306V3.6	2	1	-	-	-	-	-	-	-	-	-	-	2	-

20EEV14	EMBEDDED PROCESSORS	L	Т	Ρ	С
		3	0	0	3

9

9

9

9

OBJECTIVES:

- To provide the students with basic knowledge of Arduino microcontroller and types of signals.
- To Train the students in the basics of different types of basic sensors and their practical usage.
- To train the students on optimal selection of components based on the application.
- To provide the students with hands on experience on handling of microcontrollers and other components to provide them an edge in fast moving industry.

PRE-REQUISITE:

Course Code: 20EE301. Course Name: Digital Logic Circuits.

UNIT - I Introduction to Embedded Systems

Understanding embedded system - Overview of basic electronics and digital electronics -Microcontroller & microprocessor - Comparison between the two microcontroller (vs) microprocessor - Common features of microcontroller - Different types of microcontroller. Introduction to Arduino - Pin configuration and architecture - Device and platform features Concept of digital and analog ports - Familiarizing with Arduino Interfacing Board Introduction to Embedded C and Arduino platform

UNIT - II Review of Basic Concepts of Arduino

Arduino data types - Variables and constants – Operators - Control Statements – Arrays – Functions - Pins Configured as input - Pull-up Resistors - Pins Configured as output-pin Mode () Function-digital Write () Function - analog Read() function – Arduino Interrupts – Arduino Time - delay () function - millis () function - micros () function

UNIT - III Arduino Displays and Sensors

Working with Serial Monitor - Line graph via serial monitor - Interfacing a 8 bit LCD to Arduino Fixed one line static message display - Running message display-Using the LCD Library of Arduino - HC-SR04 Ultrasonic Module - IR Infrared Obstacle Avoidance sensor - Soil Moisture Sensor - Photo resistor sensor - Digital thermal sensor - Temperature sensor - Rotary Encoder Module - MQ-2 Gas sensor - SW-420 Motion sensor - Humidity and Rain Detection sensor - IR Infrared Flame Detection sensor - 5V/12V-Relay module (2 channel to 16 channel) - DHT11 Temperature and Humidity sensor

UNIT - IV Arduino Secondary Integrations

Types of Relays -Controlling Electrical appliances with electromagnetic relays -Working of a matrix keypad - Using the keypad library to interface with Arduino - Interfacing Servo motors to Arduino - Interfacing a RF Module - Giving Input to the controller - Using serial input - Controlling LEDs with keys - Keys as toggle switch - Interfacing a piezo buzzer - Using a buzzer as an alarm unit

UNIT - V Arduino Communications, IOT and Cloud Computing

Serial /Parallel Communication - Types of Serial Communications - Arduino UART - GSM/GPRS Arduino Interfacing - IOT and Cloud Computing - Understanding IoT fundamentals - IOT Architecture and protocols - Overview of IoT - components and IoT Communication Technologies -Basics of Wireless Networking - Introduction to ESP8266 Wi-Fi Module - Various Wi-Fi library -Web server - Introduction, installation, configuration - Posting sensor(s) data to web server -Virtualization concepts and Cloud Architecture - Cloud computing, benefits - Cloud services -SaaS, PaaS, IaaS - Cloud providers & offerings -Study of IOT Cloud platforms – Thing Speak API and MQTT - Interfacing ESP8266 with Web services - Making it a reality - Arduino Projects

TOTAL: 45 PERIODS

9

TEXT BOOKS:

- 1. Embedded System-Architecture, Programming, Design, Rajkamal, McGraw Hill, 2013
- 2. Embedded system Design, Peckol, John Wiley & Sons, 2010

REFERENCES:

- 1. Introduction to Embedded Systems, Shibu. K.V, Tata Mcgraw Hill,2009
- 2. Real-Time systems Theory and Practice, Rajib Mall, Pearson Education, 2007
- 3. Embedded system Design Using C8051, Han-Way Huang, Cengage Learning, 2009

OUTCOMES:

Course Name : EMBEDDED PROCESSORS Course Code : 20EEV14 **PSOs** CO **Course Outcomes** Unit K –CO POs C306V4.1 Understand the basics of Embedded processors and Arduino L K2 1,2 1 development boards C306V4.2 Understand the programming concepts of Arduino development kits П K2 1.2 1 1 C306V4.3 Understand the interfacing of display units in Arduino development Ш K2 1.2 boards C306V4.4 Understand the interfacing of sensors in Arduino development Ш K2 1,2 1 boards C306V4.5 Understand the interfacing of relays and motors in Arduino IV K2 1,2 1 development boards C306V4.6 Understand the interfacing of IoT applications in clouds by using V K2 1.2 1 Arduino development boards CO-PO Mapping **PO5** CO PO1 PO2 PO3 PO4 **PO7** PO9 PO10 PO11 PO12 PSO1 PSO₂ PO6 PO8 C306V4.1 2 1 1 C306V4.2 2 1 1 ---C306V4.3 2 1 1 ---------_ -C306V4.4 2 1 -1 ----------C306V4.5 2 1 ----------1 -C306V4.6 2 1 _ _ _ _ _ 1 _

20EEV15

MODERN CONTROL SYSTEM

L T P C 3 0 0 3

OBJECTIVES:

- To provide knowledge on design in state variable form.
- To provide knowledge in phase plane analysis.
- To give basic knowledge in describing function analysis.
- To study the design of optimal controller.
- To study the design of optimal estimator including Kalman Filter.

PRE-REQUISITE: NIL

UNIT-I STATE VARIABLE DESIGN

Introduction to state model - effect of state feedback - Necessary and Sufficient Condition for Arbitrary Pole placement - pole placement design - Design of state observers - separation principle - servo design - state feedback with integral control.

UNIT-II PHASE PLANE ANALYSIS

Features of linear and non-linear systems - Common physical non-linearities – Methods of linearization - Concept of phase portraits – Singular points – Limit cycles – Construction of phase portraits – Phase plane analysis of linear and non-linear systems – Isocline method.

UNIT-III DESCRIBING FUNCTION ANALYSIS

Basic concepts, derivation of describing functions for common non-linearities – Describing function analysis of non-linear systems – limit cycles – Stability of oscillations.

UNIT- IV OPTIMAL CONTROL

Introduction - Time varying optimal control – LQR steady state optimal control – Solution of Ricatti's equation – Application examples.

UNIT-V OPTIMAL ESTIMATION

Optimal estimation – Kalman Bucy Filter - Solution by duality principle - Discrete systems - Kalman Filter - Application examples.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. K. P. Mohandas, "Modern Control Engineering", Sanguine Technical Publishers, 2006.
- 2. G. J. Thaler, "Automatic Control Systems", Jaico Publishing House, 1993.
- 3. M.Gopal, "Modern Control System Theory", New Age International Publishers, 2002.

49

9

q

- 9
- 9

REFERENCES:

- 1. William S Levine, "Control System Fundamentals," The Control Handbook, CRC, Press, Tayler and Francies Group, 2011.
- 2. Ashish Tewari, 'Modern Control Design with Matlab and Simulink', John Wiley, New Delhi, 2002.
- 3. K. Ogata, 'Modern Control Engineering', 4th edition, PHI, New Delhi, 2002.
- 4. T. Glad and L. Ljung, "Control Theory –Multivariable and Non-Linear Methods", Taylor & Francis, 2002.
- 5. D.S.Naidu, "Optimal Control Systems" First Indian Reprint, CRC Press, 2009.

OUTCOMES:

Course Na	me : M	ODERN			YSTE	Λ					Cour	se Code	: 20EEV1	5
CO				C	ourse	Outco	mes				Unit	K –CO	POs	PSOs
C306V5.1	Develo	op state	e model	for pol	e place	ment.					I	K3	1,2,3	1,2
C306V5.2	Desig	n state	observe	ers.							II	K3	1,2,3	1,2
C306V5.3	Const systen	ruct pha n.	ase pla	ne traje	ectories	using	isocline	e metho	od for t	he given	Ш	K3	1,2,3	1,2
C306V5.4	Derive	e descri	bing fur	nction f	or vario	us non	linear s	systems	6.		IV	K3	1,2,3	1,2
C306V5.5	Explai	n the o	otimal o	control v	with exa	amples		V	K3	1,2,3	1,2			
C306V5.6	Explai filters.	n optin	nal est	imation	for d	screte	Kalman	V	К3	1,2,3	1,2			
						CO	-PO Ma	apping						•
CO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C306V5.1	3	2	1	-	-	-	-	-	-	-	-	-	2	2
C306V5.2	3	2	1	-	-	-	-	-	-	-	-	-	2	2
C306V5.3	3	2	1	-	-	-	-	-	-	-	-	-	2	2
C306V5.4	3	2	1	-	-	-	-	-	-	-	-	-	2	2
C306V5.5	3	3	1	-	-	-	-	-	-	-	-	-	2	2
C306V5.6	3	2	1	-	-	-	-	-	-	-	-	-	2	2

20EEV16

OPERATIONS RESEARCH

L T P C 3 0 0 3

9

9

9

9

9

OBJECTIVES

- To provide knowledge about optimization techniques and approaches.
- To formulate a real time problem as a mathematical programming model.
- To gain mathematical, computational and communication skills for solving problems.
- To gain knowledge to solve networking and inventory problems.
- To gain knowledge on solving different waiting line models

PREREQUISITE: NIL

UNIT - I LINEAR PROGRAMMING

Introduction to Operations Research, Linear programming (LP) – assumptions, properties of LP solutions, Formulations of linear programming problem – Graphical method. Solutions to LPP – simplex, Big M method.

UNIT – II TRANSPORTATION AND ASSIGNMENT MODELS

Transportation Problem - Mathematical Model, Types – Balanced and Unbalanced, Solution to Transportation Problem - Finding the initial basic solution, Optimizing the basic feasible solution applying U–V Method (Modi method)

Assignment problem –Hungarian method, Travelling salesman problem - Branch and Bound technique.

UNIT - III NETWORK MODELS

Network problem: shortest path – Systematic method, Dijkstra's algorithm, Floyd's algorithm, Minimal spanning tree – PRIM and Kruskal's algorithm, Maximum flow models – linear programming models, maximal flow problem algorithm

Project network representation, Critical Path Method computations, construction of time schedule, linear programming formulation of CPM, PERT networks.

UNIT – IV INVENTORY MODELS

Inventory models, Quantity Discount, Purchase Inventory Model - Q System, P System, Multiple-item Model - Shortage Limitation, Inventory Carrying Cost Constraint, EOQ Model - Multi-item Joint Replenishment with and without Shortages, Space Constraint.

UNIT - V QUEUEING MODELS

Queuing models - Queuing systems and structures – Notation parameter – Single server and multi server models – Poisson input – Exponential service – Constant rate service – Infinite population.

TOTAL : 45 PERIODS

- 1. Hamdy A.Taha "Operations Research An Introduction", MacMillan India Ltd., 10thEdition, 2017.
- 2. Panneerselvam R, "Operations Research", Prentice Hall India, 2016.
- 3. Hira.D Gupta.P.K, "Operations Research", S.Chand Publications, 1st Edition, Reprint 2016

REFERENCES:

- 1. G.Srinivasan, "Operations Research: Principles and Applications", PHI Ltd., 2016.
- 2. Kanti swarup Gupta.P.K, Man Muhan", Operations Research: Sultan Chand & Sons India Ltd., 12th Edition, New Delhi 2016.
- 3. Philips, Ravindran and Solberg, "Operations Research principle and practise", John Wiley, 2016.
- 4. Hiller and Liberman, Introduction to Operations Research, McGraw Hill, 2015.
- 5. Ramamurthy P, "Operations Research", New age International Publishers, 2nd edition, 2007.

OUTCOMES:

Course Na	me : Ol	PERAT	IONS F	RESEA	RCH						Course Co	ode : 201	EEV16	
CO				Co	ourse C	utcom	es				Unit	K –CO	POs	PSOs
C306V6.1	Solve	Linear	Progra	mming	Proble	ms by a	appropr	iate tec	hnique		Ι	K3	1,2,3, 8,10	1,2,3
C306V6.2	Deteri solvin mode	mine th g short l.	e perfo est rout	rmance e, trans	e charao sportati	cteristic on prob	s such lems w	as time vith an a	and co appropr	ost in iate	II	K3	1,2,3, 9,10	1,2,3
C306V6.3	Solve	the giv	en assi	gnmen	t proble	em with	an app	e metho	od.	Ш	К3	1,2,3, 8,10	1,2,3	
C306V6.4	Deter	mine th	e optim	al solut	tion for	a proje	ct sche	oroblem	۱.		K3	1,2,3	1,2,3	
C306V6.5	Deteri	mine th	e order	quanti	ty of go	ods un	onstrain	ts.	IV	К3	1,2,3, 8	1,2,3		
C306V6.6	Deteri proble	mine th ems.	e soluti	ons to :	single a	and mul	ti chanı	nel que	uing		V	К3	1,2,3, 8,9,10	1,2,3
						CO	-PO Ma	apping						
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C306V6.1	3	2	1	-	-	-	-	2	-	2	-	2	3	2
C306V6.2	3	2	1	-	-	-	-	-	2	2	-	2	3	2
C306V6.3	3	2	1	-	-	-	-	2	-	2	-	2	3	2
C306V6.4	3	2	1	-	-	-	-	-	-	-	-	2	3	2
C306V6.5	3	2	1	-	-	-	-	2	-	-	-	2	3	2
C306V6.6	3	2	1	-	-	-	-	1	2	2	-	2	3	2

L

3

Т

0

Ρ

0

С

3

PROFESSIONAL ELECTIVE – II

SMART GRID

OBJECTIVES: To impart knowledge about the following topics:

- Introduction to smart grid and compare this with conventional grid
- Smart Grid technologies both in transmission and distribution side
- Different smart meters and advanced metering infrastructure
- Power quality management issues in Smart Grid.
- The high performance computing for Smart Grid applications

PRE-REQUISITE:

20EEV21

Course Code: 20EE402 Course Name: Transmission and Distribution

UNIT - I INTRODUCTION TO SMART GRID

Evolution of Electric Grid, Concept, Definitions and Need for Smart Grid, Smart grid drivers, functions, opportunities, challenges and benefits, Difference between conventional & Smart Grid, National and International Initiatives in Smart Grid.

UNIT - II SMART GRID TECHNOLOGIES (TRANSMISSION)

Technology Drivers, Smart energy resources, Smart substations, Substation Automation, Feeder Automation, Transmission systems: EMS, FACTS and HVDC, Wide area monitoring, Protection and control.

UNIT - III SMART GRID TECHNOLOGIES (DISTRIBUTION)

DMS, Volt/VAR control, Fault Detection, Isolation and service restoration, Outage management, High-Efficiency Distribution Transformers, Phase Shifting Transformers, Plugin Hybrid Electric Vehicles (PHEV).

UNIT - IV SMART METERS AND ADVANCED METERING INFRASTRUCTURE 9

Introduction to Smart Meters, Advanced Metering infrastructure(AMI) drivers and benefits, AMI protocols, standards and initiatives, AMI needs in the smart grid, Phasor Measurement Unit(PMU), Intelligent Electronic Devices(IED)& their application for monitoring & protection.

UNIT - V POWER QUALITY MANAGEMENT IN SMART GRID AND SMART GRID 9 APPLICATIONS

Power Quality & EMC in Smart Grid, Power Quality issues of Grid connected Renewable Energy Sources, Power Quality Conditioners for Smart Grid, Web based Power Quality monitoring, Power Quality Audit. Local Area Network(LAN),House Area Network(HAN), Wide Area Network(WAN), Broad band over Power line(BPL),IP based Protocols, Basics of Web Service and CLOUD Computing to make Smart Grids smarter, Cyber Security for Smart Grid.

53

TOTAL: 45 PERIODS

9

9 do

- 1. Stuart Borlase "Smart Grid: Infrastructure, Technology and Solutions", CRC Press 2012.
- 2. Janaka Ekanayake, NickJ enkins, Kithsiri Liyanage, JianzhongWu, AkihikoYokoyama, "Smart Grid: Technology and Applications", Wiley 2012.

REFERENCES:

- 1. VehbiC. Gungor ,Dilan Sahin, Taskin Kocak, Salih Ergut, Concettina Buccella, Carlo Cecati, and Gerhard P. Hancke, "Smart Grid Technologies: Communication Technologies and Standards" IEEE Transactions On Industrial Informatics,Vol.7,No.4, November 2011.
- 2. Xi Fang, Satyajayant Misra, Guoliang Xue, and Dejun Yang "SmartGrid The New and Improved Power Grid: A Survey", IEEE Transaction on Smart Grids, vol. 14, 2012.
- 3. James Momohe "Smart Grid: Fundamentals of Design and Analysis,", Wiley-IEEE Press, 2012.

OUTCOMES:

Course Na	me : SM	MART (GRID		Cour	se Code	: 20EEV2'	1						
CO				C	ourse	Outco	mes				Unit	K –CO	POs	PSOs
C313V1.1	Discu	ss the f	unction	is, oppo	ortunitie	s, chall	lenges	and be	nefits of	f Smart	I	K2	1,2	1
	Grid													
C313V1.2	Descr	ibe the	Smart	energy	resour	ces and	d Trans	missior	systen	ns	11	K2	1,2	1
C313V1.3	Expla	in the d	ifferent	Smart	Grid di	stributio	on tech	nologie	S			K2	1,2	1
C313V1.4	Discu	ss the f	unction	of diffe	erent sn	nart me	eters an	d adva	nced		IV	K2	1,2	1
	meter	ing infra	astructu	ure.										
C313V1.5	Summ	narize t	he pow	er qual	ity man	ageme		V	K2	1,2	1			
C313V1.6	Descr	ibe the	basic s	service	on LAN	I, WAN	and Cl	oud Co	mputing	g for	V	K2	1,2	1
	Smart	: Grid a	pplicati	ons.										
						CO	-PO Ma	apping						
CO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C313V1.1	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C313V1.2	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C313V1.3	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C313V1.4	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C313V1.5	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C313V1.6	2	1	-	-	-	-	-	-	-	-	-	-	1	-

55

20EEV22

SPECIAL ELECTRICAL MACHINES

L T P C 3 0 0 3

OBJECTIVES:

- To understand the characteristics and modes of excitation of stepper motor.
- To understand the power controllers and the modes of operation of switched reluctance motor.
- To understand the construction and principle of operation of permanent magnet brushless dc motor.
- To understand the power controller circuit for permanent magnet synchronous motor.
- To understand the construction and principle of operation of synchronous reluctance motor.

PRE-REQUISITE:

Course Code: 20EE304, 20EE401 Course Name: Electrical Machines-I, Electrical Machines-II

UNIT - I STEPPER MOTOR

Construction and Principle of operation - Variable reluctance stepper motor - Permanent magnet stepper motor - Hybrid stepper motor - Static and dynamic characteristics - Driver circuit - Applications and advantages.

UNIT - II SWITCHED RELUCTANCE MOTORS

Constructional features - Principle of operation - Torque equation - Power controllers - Control circuits for SRM - Torque speed Characteristics - Microprocessor based controller.

UNIT - III PERMANENT MAGNET BRUSHLESS DC MOTOR

Permanent Magnet materials - Characteristics - construction and principle of operation - Types - Difference between mechanical and electronic commutators - EMF and torque equations - torque speed characteristics - Hall sensors - optical position sensors - Microprocessor Based controller.

UNIT - IV PERMANENT MAGNET SYNCHRONOUS MOTOR

Principle of operation - EMF and Torque equations - self-control - vector control - Torque speed Characteristics - Microprocessor based control – Applications.

UNIT - V SYNCHRONOUS RELUCTANCE MOTORS

Construction and operating principle - Axial and radial air gap motors - Phasor diagram - Voltage and torque equation - Characteristics and its Applications.

TOTAL: 45 PERIODS

10 net

9

10

9

- 1. K.Venkataratnam, 'Special Electrical Machines', Universities Press (India) Private Limited, 2008.
- 2. T. Kenjo, 'Stepping Motors and Their Microprocessor Controls', Clarendon Press London, 2009
- 3. E.G. Janardanan, 'Special electrical machines', PHI learning Private Limited, Delhi, 2014.

REFERENCES:

- 1. Miller T J E, 'Brushless Permanent Magnet and Reluctance Motor Drives', Clarendon Press, Oxford, 2008.
- 2. Kenjo T and Nagamori S, 'Permanent Magnet and Brushless DC Motors', Clarendon Press, London, 1986.
- 3. R.Krishnan, 'Switched Reluctance Motor Drives Modeling, Simulation, Analysis, Design and Application', CRC Press, New York, 2014.

Course Na	me : SF	PECIAL	ELEC		Cour	se Code	: 20EEV22	2						
CO				C	ourse	Outcor	nes				Unit	K –CO	POs	PSOs
C313V2.1	Expla	in the c	onstruc	ction an	d Princ	iple of o	operatio	on of st	epper n	notor		K2	1,2	1
C313V2.2	Discu	ss the c	constru	ction ar	nd Princ	ciple of	operati	on of S	RM			K2	1,2	1
C313V2.3	Descr Magn	ibe the et Brus	constru hless D	uction a C Moto	ind Prin or	nciple of	fopera	tion of F	Perman	ent	Ш	K2	1,2	1
C313V2.4	Expla	in the o	peratio	n Micro	proces	sor Bas	sed cor	troller f	or PME	BLDC		K2	1,2	1
C313V2.5	Discu: Motor	ss the F	Principle	e of ope	eration	of Pern	nanent	ronous	IV	K2	1,2	1		
C313V2.6	Descr Reluc	ibe the tance N	constru /lotors	uction a	ind Prir	nciple of	onous	V	K2	1,2	1			
						CO	-PO Ma	apping						
CO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C313V2.1	2	1	-	-	-	-	-	-	-	-	-	-	2	-
C313V2.2	2	1	-	-	-	-	-	-	-	-	-	-	2	-
C313V2.3	2	1	-	-	-	-	-	-	-	-	-	-	2	-
C313V2.4	2	1	-	-	-	-	-	-	-	-	-	-	2	-
C313V2.5	2	1	-	-	-	-	-	-	-	-	-	-	2	-
C313V2.6	2	1	-	-	-	-	-	-	-	-	-	-	2	-

20EEV23

ELECTRIC VEHICLES AND POWER L MANAGEMENT 3

L T P C 3 0 0 3

OBJECTIVES: To impart knowledge about the following topics:

- To understand the concept of electrical vehicles and its operations
- To compare the concept of EV with hybrid and conventional Electric vehicles
- To understand the need of power electronics converters control in DC and AC drives.
- To provide knowledge about various possible energy storage technologies that can be used in electric vehicles
- To discuss alternative energy storage systems

PRE-REQUISITE:

Course Code: 20EE401 Course Name: Electrical Machines – II

UNIT - I ELECTRIC VEHICLES AND VEHICLE MECHANICS

Electric Vehicles (EV), Hybrid Electric Vehicles (HEV), Engine ratings, Comparisons of EV with internal combustion Engine vehicles, Fundamentals of vehicle mechanics

UNIT - II ARCHITECTURE OF EV'S AND POWER TRAIN COMPONENTS 9

Architecture of EV's and HEV's – Plug-in Hybrid Electric Vehicles (PHEV)- Power train components and sizing, Gears, Clutches, Transmission and Brakes

UNIT - III CONTROL OF DC AND AC DRIVES

DC/DC chopper based four quadrant operations of DC drives – Inverter based V/f Operation (motoring and braking) of induction motor drive system – Induction motor and permanent motor based vector control operation – Switched reluctance motor (SRM) drives

UNIT - IV BATTERY ENERGYSTORAGE SYSTEM

Battery Basics, Different types, Battery Parameters, Mathematical modeling of lead acid Batteries, Traction Batteries

UNIT - V ALTERNATIVE ENERGYSTORAGE SYSTEMS

Fuel cell – Characteristics- Types – hydrogen Storage Systems and Fuel cell EV – Ultra capacitors

TOTAL: 45 PERIODS

9

9

9

TEXT BOOKS:

- 1. Iqbal Hussain, "Electric and Hybrid Vehicles: Design Fundamentals" CRC Press, Taylor & Francis Group, Second Edition, 2016
- 2. Mehrdad Ehsani, Yimin Gao, Stefano Longo, Kambiz Ebrahimi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles", CRC Press, Third Edition, 2019

REFERENCES:

- 1. Ali Emadi, Mehrdad Ehsani, John M.Miller, "Vehicular Electric Power Systems", Special Indian Edition, Marcel dekker, Inc 2010
- 2. Simona Onori, Lorenzo Serrao, "Hybrid Electric Vehicles Energy Management Strategies", Springer, 2015
- 3. Xiong, Rui, "Battery Management Algorithm for Electric Vehicles", Springer, 2020

OUTCOMES:

Course Na	me : EL	ECTR	C VEH	ICLES		Course Co	ode : 208	EV23						
CO				Co	ourse O	utcom	es				Unit	K –CO	POs	PSOs
C313V3.1	Demo	nstrate	the op	peration	of Ele	ctric ve	ehicles	and va	rious e	nergy		K2	1,2	1
	storag	ge techr	nologies	s for ele	ectrical	vehicle	s							
C313V3.2	Expla	in the A	rchitec	ture of	EV's ar	nd Pow	er Trair	ı Comp	onents			K2	1,2	1
C313V3.3	Discu	ss the (Control	of DC of	drives							K2	1,2	1
C313V3.4	Descr	ibe the	Contro	I of AC	drives				K2	1,2	1			
C313V3.5	Expla	in abou	t variou	is types	s of Bat	tery en		IV	K2	1,2	1			
C313V3.6	Gener	ralize th	ne Alter	native e	energy	storage	e syster	n			V	K2	1,2	1
						CO	-PO Ma	apping						
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C313V3.1	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C313V3.2	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C313V3.3	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C313V3.4	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C313V3.5	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C313V3.6	2	1	-	-	-	-	-	-	-	-	-	-	1	-

20EEV24

EMBEDDED C-PROGRAMMING

L	Т	Ρ	С
3	0	0	3

9

9

9

9

9

OBJECTIVES:

- To expose the students to the fundamentals of embedded Programming
- To Introduce the GNU C Programming Tool Chain in Linux.
- To study the basic concepts of embedded C.
- To teach the basics of Python Programming
- To involve Discussions/ Practice/Exercise onto revising & familiarizing the concepts
- Acquired over the 5 Units of the subject for improved employability skills.

PRE-REQUISITE: NIL

UNIT - I BASIC C PROGRAMMING

Typical C Program Development Environment - Introduction to C Programming - Structured Program Development in C - Data Types and Operators - C Program Control - C Functions - Introduction to Arrays.

UNIT - II EMBEDDED C

Adding Structure to 'C' Code: Object oriented programming with C, Header files for Project and Port, Examples. Meeting Real-time constraints: Creating hardware delays - Need for timeout mechanism - Creating loop timeouts - Creating hardware timeouts.

UNIT - III C PROGRAMMING TOOL-CHAIN IN LINUX

C preprocessor - Stages of Compilation - Introduction to GCC - Debugging with GDB - The Make utility - GNU Configure and Build System - GNU Binary utilities - Profiling - using gprof - Introduction to GNU C Library.

UNIT - IV PYTHON PROGRAMMING

Introduction - Parts of Python Programming Language - Control Flow Statements - Functions – Strings - Lists - Dictionaries - Tuples and Sets.

UNIT - V MODULES, PACKAGES AND LIBRARIES IN PYTHON

Python Modules and Packages - Creating Modules and Packages - Practical Example - Libraries for Python - Library for Mathematical functionalities and Tools - Numerical Plotting Library - GUI Libraries for Python - Imaging Libraries for Python - Netoworking Libraries.

TOTAL: 45 PERIODS

TEXT BOOKS:

1. Michael J Pont, "Embedded C", Addison-Wesley, Anim print of Pearson Education, 2002

REFERENCES:

- 1. Paul Deitel and Harvey Deitel, "C How to Program", 8th Edition, Pearson Education Limited, 2016.
- 2. William von Hagen, "The Definitive Guide to GCC", 2nd Edition, Apress Inc., 2006.

- 3. Noel Kalicharan, "Learn to Program with C", Apress Inc., 2015.
- 4. Steve Oualline, "Practical C programming", O'Reilly Media, 1997.
- 5. Fabrizio Romano, "Learn Python Programming", Second Edition, Packt Publishing, 2018.
- 6. John Paul Mueller, "Beginning Programming with Python for Dummies", 2nd Edition, John Wiley& Sons Inc., 2018.
- 7. Mark Lutz, "Programming Python", 4th Edition, O'Reilly Media Inc., 2010

Course Na	me : EN	IBEDD	ED C-I		Cour	se Code	: 20EEV24	ļ.						
CO				C	ourse	Outcor	mes				Unit	K –CO	POs	PSOs
C313V4.1	Demo syster	nstrate ns	C pro	gramm	ing an	d its sa	alient f	eatures	for er	nbeddeo		K2	1,2	1
C313V4.2	Delive compa progra	er insi atible to amming	ight i o embe j skills.	nto va dded p	arious rocesso	progra develop	amming oment v	g lang vith imp	juages/ proved (software design 8	9 1	K3	1,2,3	1
C313V4.3	Devel	op knov	wledge	on C p	rogram	ming in	Linux	environ	ment.			K2	1,2	1
C313V4.4	Posse applic	ess at ations.	oility to	o write	e pyth	non pr	nbeddec	I IV	K2	1,2	1			
C313V4.5	Devel	op the	Module	s, Pack	ages a	nd Libr	aries fo	r Pytho	n.		V	K2	1,2	1
C313V4.6	Have knowl skills.	improv edge u	ved Err pgrada	ployab ation or	ility an 1 recen	d entre It trend	epreneu s in er	ırship o nbedde	apacity d prog	/ due to ramming		K2	1,2	1
						CO	-PO Ma	apping						
CO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C313V4.1	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C313V4.2	3	2	1	-	-	-	-	-	-	-	-	-	2	-
C313V4.3	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C313V4.4	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C313V4.5	2	1	-	-		-	-	-	-	-	-	-	1	-
C313V4.6	2	1	-	-	-	-	-	-	-	-	-	-	1	-

20EEV25

SYSTEM IDENTIFICATION AND ADAPTIVE L CONTROL 3

OBJECTIVES: To impart knowledge about the following topics:

- The concept of system identification and adaptive control
- Black-box approach based system identification
- Batch and recursive identification
- Computer Controlled Systems
- Design concept for adaptive control schemes

PRE-REQUISITE:

Course Code: 20EE504 Course Name: Control Systems

UNIT - I NON-PARAMETRIC METHODS

Non-parametric methods - Transient analysis - frequency analysis - Correlation analysis - Spectral analysis - Input signal design for identification.

UNIT - II PARAMETRIC METHODS

Least squares estimation – Analysis of the least squares estimate - Best linear unbiased estimate – Model parameterizations - Prediction error methods.

UNIT - III RECURSIVE IDENTIFICATION METHODS

The recursive least square method - Model validation –Model structure determination - Introduction to closed loop system identification.

UNIT - IV ADAPTIVE CONTROL SCHEMES

Introduction – Auto-tuning of PID controller using relay feedback approach – Types of adaptive control, Gain scheduling, Model reference adaptive control, Self–tuning controller – Design of gain scheduled adaptive controller – Applications of gain scheduling.

UNIT - V MODEL-REFERENCE ADAPTIVE SYSTEM (MRAS) and SELF-TUNING 9 REGULATOR (STR)

STR – Pole placement design – Indirect STR and direct STR – MRAC - MIT rule – Lyapunov theory – Relationship between MRAC and STR.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. T. Soderstrom and PetreStoica, System Identification, Prentice Hall International (UK) Ltd. 1989
- 2. Karl J. Astrom and Bjorn Witten mark, Adaptive Control, Pearson Education, Second edition, Fifth impression, 2009.

61

9

9

9

9

С

3

Ρ

0

т

REFERENCES:

- 1. L. Ljung, System Identification Theory for the User, 2nd edition, PTR Prentice Hall, Upper Saddle River, N.J., 1999.
- 2. K. S. Narendra and A. M. Annaswamy, Stability Adaptive Systems, Prentice-Hall, 1989.
- 3. H. K. Khalil, Nonlinear Systems, Prentice Hall, 3rd edition, 2002.
- 4. William S.Levine, "Control Systems Advanced Methods, the Control Handbook, CRC Press 2011.

Course Na	Irse Name : SYSTEM IDENTIFICATION AND ADAPTIVE CONTROLCOCourse OutcomesI3V5.1Explain the various system identification techniques and features adaptive control.I3V5.2Explain the concept of system identification and adaptive controlI3V5.3Explain about Black-box approach based system identificationI3V5.4Discuss the batch and recursive identification.I3V5.5Explain about the computer controlled systems.I3V5.6Explain the concept for adaptive control schemesCO-PO MappingCOPO1PO2PO3PO4PO5PO6PO7PO8PO9PO1I3V5.121I3V5.321I3V5.421												: 20EEV2	5
CO				C	ourse	Outco	mes				Unit	K –CO	POs	PSOs
C313V5.1	Expla	in the	various	syster	n ident	ificatio	n techr	iques a	and fea	atures of		K2	1,2	-
	adapt	ive con	trol.											
C313V5.2	Expla	in the c	oncept	of syste	em ider	ntificatio	on and	adaptiv	e contr	ol	П	K2	1,2	-
C313V5.3	Expla	in abou	t Black	-box ap	proach	based	system	n identif	ication			K2	1,2	-
C313V5.4	Discu	ss the b	batch a	nd recu	rsive id	entifica		IV	K2	1,2	-			
C313V5.5	Expla	in abou	t the co	omputer	r contro	lled sys		V	K2	1,2	-			
C313V5.6	Expla	in the c	oncept	for ada	ptive c		V	K2	1,2	-				
						CO	-PO Ma	apping						
CO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C313V5.1	2	1	-	-	-	-	-	-	-	-	-	-	-	-
C313V5.2	2	1	-	-	-	-	-	-	-	-	-	-	-	-
C313V5.3	2	1	-	-	-	-	-	-	-	-	-	-	-	-
C313V5.4	2	1	-	-	-	-	-	-	-	-	-	-	-	-
C313V5.5	2	1	-	-	-	-	-	-	-	-	-	-	-	-
C313V5.6	2	1	-	-	-	-	-	-	-	-	-	-	-	-
C313V5	2	1	-	-	-	-	-	-	-	-	-	-	-	-

20EEV26

COMPUTER ORGANIZATION AND ARCHITECTURE L T P C

3 0 0 3

OBJECTIVES:

- To learn the fundamentals of a computer system and operations.
- To learn the arithmetic and logic unit and implementation of fixed-point and floating point arithmetic unit.
- To learn the basics of pipelined execution.
- To understand parallelism and multi-core processors
- To understand the memory hierarchies and different ways of communication with I/O devices

PRE-REQUISITE: NIL

UNIT - I FUNDAMENTALS OF A COMPUTER SYSTEM

Functional Units – Basic Operational Concepts- Bus structures – Performance Metrics – Instructions: Language of the Computer – Operations, Operands – Instruction Set Architecture- Instruction representation- RISC and CISC Architectures – Amdahl's Law – Logical operations – decision making – MIPS Addressing.

UNIT - II ARITHMETIC FOR COMPUTERS

ALU design -Addition and Subtraction – Multiplication – Division – Floating Point Representation – Floating Point Operations – Subword Parallelism.

UNIT - III PROCESSOR AND CONTROL UNIT

Components of the Processor - Hardwired control – Micro programmed control – Nano programming-A Basic MIPS implementation – Building a Datapath – Control Implementation Scheme – Pipelining – Pipelined data path and control – Hazards – Structural, Data and Control Hazards – Exception handling. Building blocks of Raspberry-pi.

UNIT - IV PARALLELISIM

Parallel processing challenges – Instruction Level Parallelism - Exploitation of more ILP – Hardware and Software Approaches – Dynamic Scheduling – Speculation – Compiler Approaches – Multiple Issue Processors - ILP and Thread Level Parallelism-Flynn's classification – SISD, MIMD, SIMD, SPMD, and Vector Architectures - Hardware multithreading – Multi-core processors and other Shared Memory Multiprocessors - Introduction to Graphics Processing Units, Clusters, Warehouse Scale Computers and other Message-Passing Multiprocessors.

UNIT - V MEMORY & I/O SYSTEMS

Memory Hierarchy - memory technologies – cache memory – measuring and improving cache performance – virtual memory- Memory management techniques – Associative memories - TLB's – Accessing I/O Devices – Interrupts – Direct Memory Access – Bus structure – Bus operation – Arbitration – Interface circuits - USB. Case Study: Design of Memory Systems using Raspberry Pi.

TOTAL: 45 PERIODS

TEXT BOOKS:

9

9

9

9

- 1. David A. Patterson and John L. Hennessy, Computer Organization and Design: The Hardware/Software Interface, 5th Edition, Morgan Kaufmann / Elsevier, 2014.
- 2. Carl Hamacher, Zvonko Vranesic, Safwat Zaky and Naraig Manjikian, Computer Organization and Embedded Systems, 6th Edition, Tata McGraw Hill, 2012.

REFERENCES:

- **1.** John L. Hennessey and David A. Patterson, Computer Architecture A Quantitative Approach, Morgan Kaufmann / Elsevier Publishers, 5th Edition, 2012.
- 2. John P. Hayes, Computer Architecture and Organization, 3rd Edition, Tata McGraw Hill, 2012.
- 3. William Stallings, Computer Organization and Architecture Designing for Performance, Eighth Edition, Pearson Education, 2010.
- Learning Computer Architecture using Raspberry pi EbenUpton, Jeffrey Duntemann 2016 (1st Edition).

OUTCOMES:

Course Na	me : CO	OMPUT	ER OR	GANIZ	ATION	AND A	ARCHI	ГЕСТИ	RE		Course	Code : 2	20EEV26	
CO				Co	ourse O)utcom	es				Unit	K –CO	POs	PSOs
C313V6.1	Expla	in the c	ompute	er orgar	ization	compo	nents,	instruct	ions ar	d		K2	1,2	1
	addre	ssing m	nodes.											
C313V6.2	Comp	oute the	arithm	etic ope	erations	such a	as Addi	tion, Su	otractic	on,		K3	1-3,8,9	1
	Multip	lication	and Di	ivision.										
C313V6.3	Discu	ss the b	basics o	of MIPS	impler	nentatio	on and	pipelini	ng.		III	K2	1,2,8-10,12	1
C313V6.4	Illustra	ate the	basic c	oncepts	s of par	allelism	n, multi-	ocesso	r,	IV	K2	1,2,8,9,12	1	
	GPU	& Clust	ers.											
C313V6.5	Descr	ibe the	memor	ry techr	ologies	s & I/O	system	S.			V	K2	1,2,8-10,12	1
C313V6.6	Utilize	Raspb	erry-pi	for den	nonstra	ting me	emory s	ystems			V	K3	1-3,5,8,9,12	1,2
						C	D-PO N	lapping	9					
CO	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C313V6.1	2	1	-	-	-	-	-		-	-	-	-	2	-
C313V6.2	3	2	1	-	-	-	-	1	1	-	-	-	3	-
C313V6.3	2	1	-	-	-	-	-	1	1	1	-	1	2	-
C313V6.4	2	1	-	-	-	-	-	1	1	-	-	1	2	-
C313V6.5	2	1	-	-	-	-	-	1	1	1	-	1	2	-
C313V6.6	3	2	1	-	1	-	-	1	1	-	-	1	2	1

PROFESSIONAL ELECTIVE – III

FLEXIBLE AC TRANSMISSION SYSTEMS L Ρ т 3

С 3 0 0

OBJECTIVES: To impart knowledge about the following topics:

- The start-of-art of the power system
- Performance of power systems with FACTS controllers. •
- FACTS controllers for load flow and dynamic analysis

PRE-REQUISITE:

20EEV31

Course Code: 20EE402 Course Name: Transmission and Distribution

UNIT - I INTRODUCTION

Real and reactive power control in electrical power transmission lines-loads & system compensation-Uncompensated transmission line-shunt and series compensation.

UNIT - II STATIC VAR COMPENSATOR (SVC) AND APPLICATIONS

Voltage control by SVC-Advantages of slope in dynamic characteristics-Influence of SVC on system voltage–Design of SVC voltage regulator–TCR-FC-TCR-Modeling of SVC for power flow and fast transient stability- Applications: Enhancement of transient stability - Steady state power transfer – Enhancement of power system damping.

THYRISTOR CONTROLLED SERIES CAPACITOR (TCSC) AND 9 UNIT - III **APPLICATIONS**

Operation of the TCSC-Different modes of operation-Modelling of TCSC, Variability reactance model- Modelling for Power Flow and stability studies. Applications: Improvement of the system stability limit-Enhancement of system damping.

UNIT - IV **VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS** 9

Static Synchronous Compensator (STATCOM)-Principle of operation-V-I Characteristics. Applications: Steady state power transfer-enhancement of transient stability-prevention of voltage instability. SSSC-operation of SSSC and the control of power flow-modelling of SSSC in load flow and transient stability studies- Dynamic voltage restorer (DVR).

UNIT - V **ADVANCED FACTS CONTROLLERS**

Interline DVR (IDVR) - Unified Power flow controller (UPFC) - Interline power flow controller (IPFC) - Unified Power guality conditioner (UPQC).

TEXT BOOKS:

- 1. R.Mohan Mathur, Rajiv K.Varma, "Thyristor-Based Facts Controllers for Electrical Transmission Systems", IEEE press and John Wiley & Sons, Inc, 2002.
- 2. NarainG. Hingorani, "Understanding FACTS-Concepts and Technology of Flexible AC Transmission Systems", Standard Publishers Distributors, Delhi-110006, 2011.
- 3. T.J.E Miller, Power Electronics in power systems, John Wiley and sons.

9

9

12

TOTAL: 45 PERIODS

REFERENCES:

- 1. K.R. Padiyar, "FACTS Controllers in Power Transmission and Distribution", New Age International (P) Limited, Publishers, New Delhi, 2008
- 2. A.T.John, "Flexible A.C.Transmission Systems", Institution of Electrical and Electronic Engineers (IEEE), 1999.
- 3. V.K.Sood, HVDC and FACTS controllers–Applications of Static Converters in Power System, APRIL2004, Kluwer Academic Publishers, 2004.

OUTCOMES:

Course Na	me : FL	EXIBL	E AC T	RANS		Course Co	ode : 20E	EV31						
CO				Co	ourse C)utcom	es				Unit	K –CO	POs	PSOs
C314V1.1	Devel	op ana	lytical	model	of FA	CTS co	ontrolle	r for p	ower s	ystem	I	K2	1,2	1
	applic	ation.												
C314V1.2	Expla	in the c	oncept	s about	load co	ompens	sation te	echniqu	ies.			K2	1,2	1
C314V1.3	Expla	in abou	t facts of	devices	i.							K2	1,2	1
C314V1.4	Discu	ss the s	start-of-	art of th	ne powe	er syste	em				III	K2	1,2	1
C314V1.5	Descr	ibe the	perfor	mance	of ste	ady sta	facts	IV	K2	1,2	1			
	contro	ollers.												
C314V1.6	Discu	ss abou	ut advai	nced F/	ACTS c	ontrolle	ers.				V	K2	1,2	1
						CO	-PO Ma	apping						
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C314V1.1	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C314V1.2	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C314V1.3	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C314V1.4	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C314V1.5	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C314V1.6	2	1	-	-	-	-	-	-	-	-	-	-	1	-

20EEV32

SOLID STATE DRIVES

С Ρ т 3 0 0 3

OBJECTIVES:

- To impart the basic knowledge of Electrical Drives. •
- To analyze the operation of controlled rectifier.
- To analyze the operation of chopper fed DC Drives. •
- To study and understand the operation and performance of Induction motor drives.
- To study and understand the operation and performance of synchronous motor drives.

PRE-REQUISITE:

Course Code: 20EE302, 20EE304, 20EE401, 20EE502 Course Name: Electron Devices and Circuits, Electrical Machines-I, Electrical Machines-II, Power Electronics.

UNIT - I **DRIVE CHARACTERISTICS**

Introduction : drive system, types, choice of electrical drives; Dynamics of electrical drives fundamental torque equation, multi-quadrant operation, equivalent values of drive parameters, components of load torques, classification of load torques, steady state stability, modes of operation.

UNIT - II DC MOTOR DRIVES

DC motor Fundamental relations – Steady state analysis of single phase semi converter, single phase and three phase full converter fed separately excited DC motor drive -continuous conduction - Time ratio and current limit control - chopper fed dc motor drives - single, two and 4 quadrant operations.

UNIT - III INDUCTION MOTOR DRIVES

Speed control - Stator control: Stator Voltage Control - Constant voltage variable frequency operation - V/f control - VSI and CSI fed induction motor drives and Closed loop control - Rotor control: Rotor resistance control - Qualitative treatment of slip power recovery scheme -Introduction to Vector Controlled Induction Motor Drives.

SYNCHRONOUS MOTOR DRIVES UNIT - IV

Speed control - V/f control - separate and self-control of synchronous motor drives using load commutated thyristor inverter - Margin angle control and power factor control - Permanent magnet AC motor drives - Applications.

UNIT - V **DESIGN OF CONTROLLERS FOR DC DRIVES**

Transfer function of separately excited DC motors / load and converter - Closed loop control of armature and field weakening control - Design of controllers: Current controller and speed controller - Converter selection and characteristics - Microprocessor/ Microcontroller based control of drives.

TOTAL: 45 PERIODS

9

9

9

9

- 1. Gopal K.Dubey, 'Fundamentals of Electrical Drives', Narosa Publishing House, Second Edition, 2015.
- Krishnan R., 'Electric Motor & Drives: Modelling, Analysis and Control', Pearson Education, 2015

REFERENCES:

- 1. Bimal K Bose, 'Modern Power Electronics and AC Drives', Pearson Education, 2016.
- 2. Vedam Subramanyam, 'Electric Drives Concepts and Applications', McGraw Hill, Second Edition, 2010
- 3. Pillai S.K., 'A First Course on Electrical Drives', New Age International Publishers, Third Edition, 2013.
- 4. Muhammad H. Rashid, 'Power Electronics: Circuits, Devices and Applications', Pearson Education, 4th Edition, 2017.

OUTCOMES:

Course Na	me : SC		TATE [Cour	se Code	e : 20EEV3	2						
CO				C	Course	Outco	mes				Unit	K –CO	POs	PSOs
C314V2.1	Expla	in the b	asics a	nd imp	ortance	of elec	ctric driv	ves.			I	K2	1,2	1
C314V2.2	Expla motor	in the o drives.	peratio	n of the	e variou	IS CONV	erter fe	d separ	ately ex	xcited do		K2	1,2	1
C314V2.3	Descr dc mc	ibe the tor driv	opera res.	tion of	the var	ious Cl	nopper	fed se	parately	/ excited	1 11	K2	1,2	1
C314V2.4	Expla motor	in the drives.	various	s solid	state s	speed	control	metho	ds of i	nductior	n III	K2	1,2	1
C314V2.5	Discu drives	ss the and ap	variou oplicatio	s spee ons.	ed cont	rol me	chronou	is moto	r IV	K2	1,2	1		
C314V2.6	Apply currer drive.	the kno nt and	owledg speed	e of Ele control	ectrical lers for	Engine a clos	develop dc moto	o V	К3	1,2,3	1			
C314V2.7	Apply comm map h	the et nunicate nigher c	hical p e effect order P(rinciple ively o Os)	s, func n the a	tion eff ssigned	ectively d activi	/ as ar ties. (A	n individ ctivity E	dual and Based to	1 -	-	1,2,3,4,8, 9,10	1,2
						CO	-PO Ma	apping			*			
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C314V2.1	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C314V2.2	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C314V2.3	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C314V2.4	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C314V2.5	2	1	-	-		-	-	-	-	-	-	-	1	-
C314V2.6	3	2	1	-	-	-	-	-	-	-	-	-	2	-
C314V2.7	3	3	2	1	-	-	-	2#	2#	2#		-	1	2

20EEV33	ELECTRIC VEHICLE DESIGN, MECHANICS	L	т	Ρ	С
	AND CONTROL	2	0	2	3

OBJECTIVES:

- To learn the basics of EV and vehicle mechanics
- To know the EV architecture
- To study the energy storage system concepts
- To derive model for batteries and to know the different types of batteries and its charging methods
- To learn the control preliminaries for DC-DC converters.

PRE-REQUISITE: NIL

UNIT - I INTERNAL COMBUSTION ENGINES

IC Engines, BMEP and BSFC, Vehicle Fuel Economy, Emission Control Systems, Treatment of Diesel Exhaust Emissions.

UNIT - II ELECTRIC VEHICLES AND VEHICLE MECHANICS

Electric Vehicles (EV), Hybrid Electric Vehicles (HEV), Engine ratings - Comparisons of EV with internal combustion Engine vehicles - Fundamentals of vehicle mechanics.

UNIT - III **BATTERY MODELING, TYPES AND CHARGING**

Batteries in Electric and Hybrid Vehicles - Battery Basics - Battery Parameters. Types - Lead Acid Battery - Nickel-Cadmium Battery - Nickel-Metal-Hydride (NiMH) Battery - Li-Ion Battery - Li-Polymer Battery, Zinc-Air Battery, Sodium-Sulphur Battery, Sodium-Metal Chloride, Research and Development for Advanced Batteries. Battery Modelling, Electric Circuit Models. Battery Pack Management, Battery Charging.

UNIT - IV **CONTROL PRELIMINARIES**

Control Design Preliminaries - Introduction - Transfer Functions — Bode plot analysis for First order and second order systems - Stability - Transient Performance- Power transfer function for boost converter – Gain margin and Phase margin study - open loop mode.

UNIT - V **CONTROLOFACMACHINES**

Introduction - Reference frame theory, basics-modeling of induction and synchronous machine in various frames – Vector control – Direct torque control.

TOTAL: 30 PERIODS

30 PERIODS

LABCOMPONENT:

- 1. Develop a model that could estimate Soc and SoH of Li-Ion Battery.
- 2. Modelling and thermal analysis of Li-Ion Battery.
- Simulation of boost converter and calculating gain and phase margin from the transfer function.
- Simulation of vector control of induction motor

TOTAL: 60 PERIODS

REFERENCES:

6

6

6

6

- 1. Electric and Hybrid Vehicles, Design Fundamentals, Third Edition, Iqbal Husain, CRC Press, 2021.
- Power Electronic Converters, : Dynamics and Control in Conventional and Renewable Energy Applications, Teuvo Suntio, Tuomas Messo, Joonas Puukko, 1st Edition, Wiley-VCH.
- 3. Ali Emadi, Mehrdad Ehsani, John M.Miller, "Vehicular Electric Power Systems", Special Indian Edition, Marcel dekker, Inc 2003,1st Edition.
- 4. C.C.Chan and K.T.Chau, 'Modern Electric Vehicle Technology', OXFORD University Press, 2001, 1st Edition.
- WieLiu, "Hybrid Electric Vehicle System Modeling and Control", Second Edition, John Wiley & Sons, 2017, 2nd Edition.
- 6. Dynamic Simulation of Electric Machinery using MATLAB, Chee Mun Ong, Prentice Hall, 1997, 1st Edition.
- Electrical Machine Fundamentals with Numerical Simulation using MATLAB / SIMULINK, Atif Iqbal, Shaikh Moinoddin, Bhimireddy Prathap Reddy, Wiley, 2021, 1st Edition.

OUTCOMES:

Course Name : ELECTRIC VEHICLE DESIGN, MECHANICS AND CONTROL											Cour	Course Code : 20EEV33				
CO	Course Outcomes											K –CO	POs	PSOs		
C314V3.1	Describe the concepts related with EV, HEV and to compare										e I	K2	1,2	1		
	the same with internal combustion engine vehicles.															
C314V3.2	Discuss the fundamentals of vehicle mechanics											K3	1,2	1		
C314V3.3	Explain the concepts related with batteries and parameters of									F III	K2	1,2	1			
	battery															
C314V3.4	Demonstrate the battery and to study the research and											K2	1,2	1		
	development for batteries															
C314V3.5	Determine the gain margin & phase margin for various types										i IV	K2	1,2	1		
	of transfer functions of boost converter															
C314V3.6	Demonstrate the Control of AC Machines										V	K2	1,2	1		
CO-PO Mapping																
CO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
C314V3.1	2	1	-	-	2	-	-	-	1	-	-	-	1	-		
C314V3.2	2	1	-	-	2	-	-	-	1	-	-	-	1	-		
C314V3.3	2	1	-	-	2	-	-	-	1	-	-	-	1	-		
C314V3.4	2	1	-	-	2	-	-	-	1	-	-	-	1	-		
C314V3.5	2	1	-	-	2	-	-	-	1	-	-	-	1	-		
C314V3.6	2	1	-	-	2	-	-	-	1	-	-	-	1	-		

20EEV34

EMBEDDED SYSTEM DESIGN

L T P C 3 0 0 3

9

9

9

OBJECTIVES:

- To explain Building Blocks of a Embedded System and software Tools.
- To understand role of Input/output interfacing with Bus Communication protocol.
- To understand ISR and scheduling for multi-task process.
- To introduce the basics of a Real time operating system.
- To discuss applications based on embedded design approaches.

PRE-REQUISITE: NIL

UNIT – I INTRODUCTION TO EMBEDDED SYSTEMS

Introduction to Embedded Systems – The build process for embedded systems - Structural units for an Embedded microcontroller, selection of processor & memory devices- DMA – Memory management methods - Timer and Counting devices, Watchdog Timer, Real Time Clock - IDE, assembler, compiler, linker, simulator, debugger, In-circuit emulator, Target Hardware Debugging, Boundary Scan.

UNIT – II EMBEDDED NETWORKING

Embedded Networking: Introduction, I/O Device Ports & Buses – Serial Bus communication protocols - RS232 standard – RS485 – USB Bus - Serial Peripheral Interface (SPI) – Inter Integrated Circuits (IIC).

UNIT - III INTERRUPTS SERVICE MECHANISM AND DEVICE DRIVERS 9

Programmed I/O busy-wait approach without interrupt service mechanism - ISR concept - interrupt sources – multiple interrupts – context and periods for context switching, interrupt latency and deadline – Introduction to Device Drivers.

UNIT - IV RTOS BASED EMBEDDED SYSTEM

Introduction to basic concepts of RTOS- Task, process & threads, interrupt routines in RTOS, Multiprocessing and Multitasking, Pre emptive and non-pre emptive scheduling, Task communication shared memory, message passing, Inter process Communication – synchronization between processes-semaphores, Mailbox, pipes, priority inversion, priority inheritance, comparison of commercial Real time Operating systems: VxWorks, μ C/OS-II, RT Linux.

UNIT - VEMBEDDED SYSTEM APPLICATION WITH DEVELOPMENT9Case Study:Washing Machine - Automotive Application - RFID-System, Application,Embedded Product Development Life Cycle, Objective, Need, and different Phases &Modelling of the EDLC.

TOTAL: 45 PERIODS

- 1. Rajkamal, 'Embedded System-Architecture, Programming, Design', Mc Graw Hill, 2013
- 2. Peckol, 'Embedded system Design', John Wiley & Sons, 2010
- 3. Shibu. K.V, 'Introduction to Embedded Systems', Tata Mcgraw Hill, 2009

REFERENCES:

- 1. Elicia White, 'Making Embedded Systems', O' Reilly Series SPD,2011
- 2. Tammy Noergaard, 'Embedded Systems Architecture', Elsevier, 2006
- 3. Han-Way Huang, 'Embedded system Design Using C8051', Cengage Learning, 2009
- 4. Rajib Mall, 'Real-Time systems Theory and Practice', Pearson Education, 2007

Course Name : EMBEDDED SYSTEM DESIGN											Cour	Course Code : 20EEV34				
CO	Course Outcomes										Unit	K –CO	POs	PSOs		
C314V4.1	Explain the basic build process of embedded systems										I	K2	1,2	1		
C314V4.2	Describe the different types of I/O device ports, buses and different										: II	K2	1,2	1		
	interfaces for data transfer in embedded networking															
C314V4.3	Explain the interrupt service mechanism and device drivers.											K2	1,2	1		
C314V4.4	Explain the basic concept of Real Time Operating Systems										IV	K2	1,2	1		
C314V4.5	Apply the knowledge of programming concepts of Embedded Systems										V	K3	1,2,3	1		
	for various applications															
C314V4.6	Explain the different phases and modeling of the EDLC.										V	K2	1,2	1		
CO-PO Mapping																
CO	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 F									PO11	PO12	PSO1	PSO2			
C314V4.1	2	1	-	-	-	-	-	-	-	-	-	-	1	-		
C314V4.2	2	1	-	-	-	-	-	-	-	-	-	-	2	-		
C314V4.3	2	1	-	-	-	-	-	-	-	-	-	-	2	-		
C314V4.4	2	1	-	-	-	-	-	-	-	-	-	-	1	-		
C314V4.5	3	2	1	-	-	-	-	-	-	-	-	-	2	-		
C314V4.6	2	1	-	-	-	-	-	-	-	-	-	-	2	-		
C314V4	2	1	-	-	-	-	-	-	-	-	-	-	2	-		
KLNCE UG EEE R2020 (AY 2021-2022)

20EEV35

OPTIMAL CONTROL

L T P C 3 0 0 3

OBJECTIVES:

- To highlight the significance of optimal control in process industries and the different methods of optimization
- To introduce the concept of variational approach for the design of optimal control system
- To formulate linear quadratic optimal control strategy with specified degree of stability
- To impart knowledge about discrete time linear state regulator system and discrete timelinear quadratic tracking system
- To illustrate the application of dynamic programming and HJB equation for the design of constrained and time optimal control systems

PRE-REQUISITE:

Course Code: 20EE504 Course Name: Control Systems

UNIT – I INTRODUCTION TO OPTIMAL CONTROL 9

Statement of optimal Control problem - problem formulation and forms of optimal control - performance measures - various methods of optimization - Linear programming - nonlinear programming.

UNIT – II CALCULUS OF VARIATIONS

Basic concepts – variational problem - Extreme functions with conditions - variational approachto optimal control systems.

UNIT - III LINEAR QUADRATIC OPTIMAL CONTROL SYSTEM 9

Problem formulation - finite time LQR - infinite time LQR - Linear Quadratic tracking system – LQR with a specified degree of stability.

UNIT - IV DISCRETE TIME OPTIMAL CONTROL SYSTEM

Variational calculus for DT system – DT optimal control system - DT linear state regulator system - DT linear quadratic tracking system .

UNIT - V PONTRYAGIN MINIMUM PRINCIPLE

Pontryagin minimum principle - Dynamic programming – Hamilton - Jacobi - Bellman equation - LQR system using HJB equation – Time optimal control – fuel optimal control system -optimal control system with constraints.

TOTAL: 45 PERIODS

TEXT BOOKS:

1. Donald E. Kirk, Optimal Control Theory – An Introduction, Dover Publications, Inc. Mineola, New York, 2012, 10th Edition.

REFERENCES:

9

9

- 1. D. Subbaram Naidu, Optimal Control Systems, CRC Press, New York, 2003, 1st Edition.
- 2. Yan Wang, Cheng-Lin Liu, Zhi-Cheng Ji, Quantitative Analysis and Optimal Control of Energy Efficiency in Discrete Manufacturing System, Springer, 2020, 1st Edition.
- 3. Lewis F.L. Draguna Vrabia, Syrmos V.L, Optimal control, John Wiley & sons, 2012.

Course Na	me : Ol	ΡΤΙΜΑΙ		TROL							Cour	se Code	: 20EEV3	5
CO				C	ourse	Outco	mes				Unit	K –CO	POs	PSOs
C314V5.1	Form	ulate t	he opt	imizati	on pro	blem l	based	on the	requi	rements	; I	K2	1,2	1
	and e	valuat	e thep	erform	ance c	of optim	nal con	troller						
C314V5.2	Apply	' the v	ariatio	nal ap	proach	for op	otimal	contro	syste	ms with	n II	K2	1,2	1
	condi	tions												
C314V5.3	Differ	entiate	e finite	time	LQR a	ind infi	inite tir	me LC	R and	desigr	n III	K2	1,2	1
	linear	quadr	atic tra	ackings	system									
C314V5.4	Analy	ze dis	crete 1	time o	otimal	contro	l syste	ed in o	differen	t IV	K2	1,2	1	
	applic	cations	;											
C314V5.5	Desig	n con	straine	ed opt	imal c	ontrol	syster	m and	time	optima	I V	K3	1,2,3	1
	contro	ol syste	em											
C314V5.6	Desig	n optir	mal co	ntrol sy	/stem	with co	onstrair	nts.			V	K2	1,2	1
						CO	-PO Ma	apping			*			
CO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C314V5.1	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C314V5.2	2	1	-	-	-	-	-	-	-	-	-	-	2	-
C314V5.3	2	1	-	-	-	-	-	-	-	-	-	-	2	-
C314V5.4	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C314V5.5	3	2	1	-	-	-	-	-	-	-	-	-	2	-
C314V5.6	2	1	-	-	-	-	-	-	-	-	-	-	2	-

75

KLNCE UG EEE R2020 (AY 2021-2022)

BLOCKCHAIN TECHNOLOGY

L T P C 3 0 0 3

OBJECTIVES:

20EEV36

- Comprehend the structure of a Blockchain networks.
- Evaluate security issues relating to Blockchain and cryptocurrency.
- Design and analyze the applications based on Blockchain technology

PRE-REQUISITE: NIL

UNIT - I INTRODUCTION TO BLOCKCHAIN

History, Digital Money to Distributed Ledgers, Design Primitives, Protocols, Security, Consensus, Permissions, Privacy

UNIT - II BLOCKCHAIN ARCHITECTURE, DESIGN AND CONSENSUS

Basic crypto primitives: Hash, Signature, Hash chain to Blockchain, Basic consensus mechanisms, Requirements for the consensus protocols, PoW and PoS, Scalability aspects of Blockchain consensus protocols

UNIT - III PERMISSIONED AND PUBLIC BLOCKCHAINS

Design goals, Consensus protocols for Permissioned Blockchains, Hyperledger Fabric, Decomposing the consensus process, Hyperledger fabric components, Smart Contracts, Chain code design, Hybrid models (PoS and PoW)

UNIT - IV BLOCKCHAIN CRYPTOGRAPHY

Different techniques for Blockchain cryptography, privacy and security of Blockchain, multi-sig concept

UNIT - V RECENT TRENDS AND RESEARCH ISSUES IN BLOCKCHAIN 9

Scalability, secure cryptographic protocols on Blockchain, multiparty communication, FinTech and Blockchain applicability

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Andreas Antonopoulos,-Mastering Bitcoin, Programming the Open Blockchain,2017
- 2. Melanie Swan,-Blockchain, Blueprint for a new Economy, 1st edition, 2015

REFERENCES:

- 1. Jonathan B Morley- That Book on Blockchain: A One-Hour Intro, 2017.
- Daniel Drescher-Blockchain Basics: A Non-Technical Introduction in 25 Steps 1st Edition, 2017.

10 ...s

8

9

OUTCOMES:

Course Na	me : Bl	OCK (CHAIN	TECHN	IOLOG	Y					Course	Code :	20EEV36	
CO				Co	ourse C	utcom	es				Unit	K –CO	POs	PSOs
C314V6.1	Discu: and p	ss the l rivacy	basic o	f block	chain i	n terms	s of pro	otocols	and se	ecurity	1	K2	1,2,8,9	-
C314V6.2	Explai	in the c	rypto p	rimitive	s of blo	ck chai	n archit	ecture			2	K2	1,2,8,9	-
C314V6.3	Illustra	ate the	approp	riate Co	onsensi	us desig	gn for a	pplicati	on prot	ocol	2	K2	1,2,8,9	-
C314V6.4	Apply	Hyper	ledger	Fabric t	to imple	ement ti	he Bloc			3	K3	1,2,3,8 ,9,12	-	
C314V6.5	Apply crypto	varic graphy	ous cr , privac	yptogra y and s	aphic security	technic	ques	ock c	hain	4	K3	1,2,3,8 ,9,12	-	
C314V6.6	Discu	ss the r	esearc	h issue	s of Blo	ock chai	in				5	K2	1,2,8,9	-
						CO-	PO Maj	oping						
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C314V6.1	2	1	-	-	-	-	-	1	1	-	-	-	-	-
C314V6.2	2	1	-	-	-	-	-	1	1	-	-	-	-	-
C314V6.3	2	1	-	-	-	-	-	1	1	-	-	-	-	-
C314V6.4	3	2	1	-	-	-	-	1	1	-	-	1	-	-
C314V6.5	3	2	1	-	1	1	-	1	1	-	-	1	-	-
C314V6.6	2	1	-	-	-	-	-	1	1	-	-	-	-	-

PROFESSIONAL ELECTIVE – IV

20EEV41 ENERGY AUDITING AND MANAGEMENT L T P

OBJECTIVES: To impart knowledge on the following Topics

- Awareness about importance of energy management and auditing.
- Understanding the Energy management on various electrical motors.
- Understanding the Energy management on electric lighting systems.
- Apply the different types of metering methods of energy management and auditing
- Provide the economic models for energy and load management.

PRE-REQUISITE:

Course Code: 20EE304, 20EE401, 20EE402 Course Name: Electrical Machines-I, Electrical Machines-II, Transmission and Distribution

UNIT - I INTRODUCTION

Basics of Energy – Need for energy management – Energy accounting – Energy monitoring, targeting and reporting – Energy audit process.

UNIT - II ENERGY MANAGEMENT FOR MOTORS AND COGENERATION

Energy management for electric motors – Transformer and reactors – Capacitors and synchronous machines, energy management by cogeneration – Forms of cogeneration – Feasibility of cogeneration – Electrical interconnection.

UNIT - III LIGHTING SYSTEMS

Energy management in lighting systems – Task and the working space – Light sources – Ballasts – Lighting controls – Optimizing lighting energy – Power factor and effect of harmonics, lighting and energy standards..

UNIT - IV METERING FOR ENERGY MANAGEMENT

Metering for energy management – Units of measure – Utility meters – Demand meters – Paralleling of current transformers – Instrument transformer burdens – Multi tasking solid state meters, metering location vs requirements, metering techniques and practical examples.

UNIT - V ECONOMIC ANALYSIS AND MODELS

Economic analysis – Economic models – Time value of money – Utility rate structures – Cost of electricity – Loss evaluation, load management – Demand control techniques – Utility monitoring and control system – HVAC and energy management – Economic justification.

TOTAL: 45PERIODS

TEXT BOOKS:

- 1. Barney L. Capehart, Wayne C. Turner, and William J. Kennedy, Guide to Energy Management, Fifth Edition, The Fairmont Press, Inc., 2006
- 2. Eastop T. D & Croft D. R, Energy Efficiency for Engineers and Technologists, Logman Scientific & Technical, ISBN-0-582-03184, 1990.

77

L T P C 3 0 0 3

9

9

9

9

REFERENCES:

- 1. Reay D.A, Industrial Energy Conservation, 1stedition, Pergamon Press, 1977.
- 2. IEEE Recommended Practice for Energy Management in Industrial and Commercial Facilities, IEEE, 1996.
- 3. Amit K. Tyagi, Handbook on Energy Audits and Management, TERI, 2003.
- 4. Electricity in buildings good practice guide, McGraw-Hill Education, 2016.

OUTCOMES:

Course Na	me : EN	NERGY		ING A	ND MA	NAGE	MENT			Course	Code :	20EEV41			
CO				Co	ourse C)utcom	es				Unit	K –CO	POs	PSOs	
C315V1.1	Explai	in the ir	nportar	nce of e	energy r	manage	ement a	nd aud	iting.		I	K2	1,2,6,7	1	
C315V1.2	Descr equip	ibe en ment.	iergy r	nanage	ement	on dif	ferent	types	of ele	ctrical	II	K3	1,2,6,7	1	
C315V1.3	Explai	in the F	orms a	nd feas	ibility o	f coger	neration	1			II	K3	1,2,6,7	1	
C315V1.4	Discu: syster	iscuss the energy management on different types of lightingIIIK31,2,6,71ystem and light sources.escribe the different types of metering methods of energyIVK41,2,6,7,121													
C315V1.5	Descr mana	Describe the different types of metering methods of energy IV K4 1,2,6,7,12 1 nanagement and auditing.													
C315V1.6	Explai	in the e	conom	ic mode	els for e	energy a	and loa	d mana	gemen	t.	V	K2	1,2,6,7	1	
						CO	-PO Ma	apping					•		
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
C315V1.1	2	1	-	-	-	1	1	-	-	-	-	-	1	-	
C315V1.2	2	1	-	-	-	1	1	-	-	-	-	-	1	-	
C315V1.3	2	1	-	-	-	1	1	-	-	-	-	-	1	-	
C315V1.4	2	1	-	-	-	1	1	-	-	-	-	-	1	-	
C315V1.5	2	1	-	-	-	1	1	-	-	-	-	1	1	-	
C315V1.6	2	1	-	-	-	1	1	-	-	-	-	-	1	-	

20EEV42

CONTROL OF ELECTRICAL DRIVES

L T P C 3 0 0 3

OBJECTIVES:

- To understand the DC drive control.
- To study and analyze the Induction motor drive control.
- To study and understand the Synchronous motor drive control.
- To study and analyze the SRM and BLDC motor drive control.
- To analyze and design the Digital control for drives.

PRE-REQUISITE:

Course Code: 20EE502 Course Name: Power Electronics

UNIT - I CONTROL OF DC DRIVES

Losses in electrical drive system, Energy efficient operation of drives, block diagram /transfer function of self, separately excited DC motors --closed loop control-speed control current control - constant torque/power operation - P, PI and PID controllers–response Comparison.

UNIT - II CONTROL OF INDUCTION MOTOR DRIVE

VSI and CSI fed induction motor drives-principles of V/f control-closed loop variable frequency PWM inverter with dynamic braking- static Scherbius drives- power factor considerations– modified Kramer drives-principle of vector control- implementation-block diagram, Design of closed loop operation of V/f control of Induction motor drive systems.

UNIT - III CONTROL OF SYNCHRONOUS MOTOR DRIVES

Open loop VSI fed drive and its characteristics–Self-control–Torque control –Torque angle Control –Power factor control–Brushless excitation systems—Field oriented control –Design of closed loop operation of Self-control of Synchronous motor drive systems.

UNIT - IV CONTROL OF SRM AND BLDC MOTOR DRIVES

SRM construction - Principle of operation - SRM drive design factors-Torque controlled SRM- Block diagram of Instantaneous Torque control using current controllers and flux Controllers. Construction and Principle of operation of BLDC Machine -Sensing and logic switching scheme,-Sinusoidal and trapezoidal type of Brushless dc motors – Block diagram of current controlled Brushless dc motor drive.

UNIT - V DIGITAL CONTROL OF DC DRIVE

Phase Locked Loop and micro-computer control of DC drives–Program flow chart for constant constant torque and constant horse power operations Speed detection and current sensing circuits and feedback elements.

TOTAL: 45 PERIODS

TEXT BOOKS:

1. Gopal K.Dubey, Fundamentals of Electrical Drives, Narosa Publishing House, Second Edition, 2015.

79

9

9

9

9

2. Krishnan R., " Electric Motor & Drives: Modelling, Analysis and Control", Pearson Education, 2015

REFERENCES:

- 1. Bin Wu, High-Power Converters and AC Drives, Wiley-IEEE Press
- 2. Bimal K Bose, "Modern Power Electronics and AC Drives" Pearson Education, 2016.
- 3. R. Krishnan, Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and Applications, CRC press, 2001.
- 4. Werner Leonhard, Control of Electrical Drives, 3rd Edition, Springer, Sept., 2001.
- 5. R. Krishnan, Permanent Magnet Synchronous and Brushless DC Motor Drives, CRC press, 2001.
- 6. Murphy, J.M.D, Turnbull F.G, Thyristor control of AC motors,., Pergamon press, Oxford, 1988

Course Na	me : CO	ONTRO	DL OF E	LECT	RICAL	DRIVE	S				Cour	se Code	: 20EEV42	2	
CO				C	ourse	Outcor	mes				Unit	K –CO	POs	PSOs	
C315V2.1	Expla	in the v	arious	control	strateg	ies and	contro	llers for	DC Mo	otor	I	K2	1,2	1	
	Drive	system	IS.		-										
C315V2.2	Discu	ss the v	/arious	control	strateg	jies and	d contro	llers fo	r Induct	ion	II	K3	1,2,3	1	
	Motor	Drive s	systems	s and de	evelop	the clos	sed loo	o opera	tion of	V/f					
	contro	ol of Ind	luction	motor d	rive sys	stems.									
C315V2.3	Descr	ibe the	various	s contro	l strate	gies an	nd contr	ollers fo	or Sync	hronous		K2	1,2	1	
	Motor	Drive s	systems	S.		-			-						
C315V2.4	Explai	in the v	K2	1,2	1										
	Drive	kplain the various control strategies and controllers for SRM Motor IV K2 1,2 1 rive systems.													
C315V2.5	Discu	ss the v	/arious	control	strateg	jies and	d contro	llers fo	r BLDC	Motor	IV	K2	1,2	1	
	Drive	system	IS.		-										
C315V2.6	Expla	in the v	arious	Digital o	control	for DC	Motor D	Drive sy	stems.		V	K2	1,2	1	
						CO	-PO Ma	pping							
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
C315V2.1	2	1	-	-	-	-	-	-	-	-	-	-	1	-	
C315V2.2	3	2	1	-	-	-	-	-	-	-	-	-	2	-	
C315V2.3	2	1	-	-	-	-	-	-	-	-	-	-	1	-	
C315V2.4	2	1	-	-	-	-	-	-	-	-	-	-	1	-	
C315V2.5	2	1	-	-		-	-	-	-	-	-	-	1	-	
C315V2.6	2	1	-	-	-	-	-	-	-	-	-	-	1	-	

DESIGN OF ELECTRIC VEHICLE CHARGING SYSTEM 20EEV43 т Ρ С L 3 0 0 3

OBJECTIVES:

- To understand the different types of energy storage system.
- To study about the battery characteristic & parameters •
- To model the types of batteries
- To know the concepts of battery management system and design the battery pack.
- To study about the battery testing, disposal and recycling

PRE-REQUISITE: NIL

UNIT - I ENERGY STORAGE SYSTEM

Batteries: Lead Acid Battery, Nickel based batteries, Sodium based batteries, Lithium based batteries – Li-ion & Li-poly, Metal Air Battery, Zine Chloride battery; Ultra capacitors; Flywheel Energy StorageSystem; Hydraulic Energy Storage System; Comparison of different Energy Storage System Suggested reading: Study of different types of batteries

UNIT - II **BATTERY CHARACTERISTICS & PARAMETERS**

Cells and Batteries- conversion of chemical energy to electrical energy- Battery Specifications: Variables to characterize battery operating conditions and Specifications to characterize battery nominal and maximum characteristics; Efficiency of batteries; Electrical parameters Heat generation- Battery design- Performance criteria for Electric vehicles batteries- Vehicle propulsion factors- Power and energy requirements of batteries- Meeting battery performance criteria- setting new targets for batteryperformance.

UNIT - III **BATTERY MODELLING**

Approach to modelling batteries, simulation model of a rechargeable Li-ion battery, simulation model of a rechargeable NiCd battery, Parameterization of the NiCd battery model, Simulation examples.

UNIT - IV **BATTERY PACK AND BATTERY MANAGEMENT SYSTEM**

Selection of battery for EVs & HEVs, Traction Battery Pack design, Requirement of Battery Monitoring, Battery State of Charge Estimation methods, Battery Cell equalization problem, thermal control, protection interface, SOC Estimation, Energy & Power estimation, Battery thermal management system, Battery Management System: Definition, Parts: Power Module, Battery, DC/DC Converter, load, communication channel, Battery Pack Safety, Battery Standards & Tests.

UNIT - V **BATTERY TESTING, DISPOSAL & RECYCLING**

Chemical & structure material properties for cell safety and battery design, battery testing, limitations for transport and storage of cells and batteries, Recycling, disposal and second use of batteries. Battery Leakage: gas generation in batteries, leakage path, leakage rates. Ruptures: Mechanical stress and pressure tolerance of cells, safety vents, Explosions: Causes of battery explosions, explosive process, Thermal Runway: High discharge rates, Short circuits, charging and discharging. Environment and Human Health impact assessments of batteries, General recycling issues and drivers, methods of recycling of EV batteries.

9

9

9

TEXT BOOKS:

- 1. Mehrdad Ehsani, Yimin Gao, Ali Emadi, "Modern Electric Hybrid Electric and Fuel Cell Vehicles", Taylor& Francis Group, 2010.
- 2. James Larminie, John Lowry, "Electric Vehicle Technology Explained", John Wiley & Sons Ltd, 2003.

REFERENCES:

- 1. Guangjin Zhao, "Reuse and Recycling of Lithium-Ion Power Batteries", John Wiley & Sons. 2017. (ISBN: 978-1-1193-2185-9)
- 2. Arno Kwade, Jan Diekmann, "Recycling of Lithium-Ion Batteries: The LithoRec Way", Springer, 2018. (ISBN: 978-3-319-70571-2)
- 3. Ibrahim Dinçer, Halil S. Hamut and Nader Javani, "Thermal Management of Electric Vehicle Battery Systems", JohnWiley& Sons Ltd., 2016.
- 4. Chris Mi, Abul Masrur& David Wenzhong Gao, "Hybrid electric Vehicle- Principles& Applications with Practical Properties", Wiley, 2011.
- 5. G. Pistoia, J.P. Wiaux, S.P. Wolsky, "Used Battery Collection and Recycling", Elsevier, 2001. (ISBN: 0-444-50562-8)"

OUTCOMES:

Course Na	me : DI	ESIGN	OF ELI	ECTRIC		CLE CH	IARGI	NG SYS	STEM		Cour	se Code	: 20EEV4	3
CO				C	ourse	Outco	mes				Unit	K –CO	POs	PSOs
C315V3.1	Discu	uss abc	out the o	differen	t types	of ener	gy stor	age sys	stem.		I	K2	1,2	1
C315V3.2	Desc	ribe ab	out the	battery	chara	cteristic	: & para	meters			II	K2	1,2	1
C315V3.3	Expla	ain the	differer	it types	of batt	eries.						K2	1,2	1
C315V3.4	Expla	ain the	concep	ts of ba	attery pa	ack des	sign.				IV	K2	1,2	1
C315V3.5	Expla	ain the	concep	ts of ba	attery m	anager	ment sy			IV	K2	1,2	1	
C315V3.6	Expla	ain abo	ut the b	attery t	esting,	dispos		V	K2	1,2	1			
						CO	-PO Ma	apping						
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C315V3.1	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C315V3.2	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C315V3.3	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C315V3.4	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C315V3.5	2	1	-	-		-	-	-	-	-	-	-	1	-
C315V3.6	3	2	1	-	-	-	-	-	-	-	-	-	2	-

20EEV44 EMBEDDED CONTROL FOR ELECTRIC DRIVES L T P C

2 0 2 3

OBJECTIVES:

- To provide the control concept for electrical drives
- To emphasize the need of embedded systems for controlling the electrical drives
- To provide knowledge about various embedded system based control strategies for electrical drives
- To Impart the knowledge of optimization and machine learning techniques used for electrical drives
- To familiarize the high-performance computing for electrical drives

PRE-REQUISITE:

Course Code: 20EE304, 20EE401, 20EE505

Course Name: Electrical Machines-I, Electrical Machines-II, Microprocessors, Microcontrollers and Applications

UNIT - I INTRODUCTION TO ELECTRIC DRIVES

Electric drives and its classification - Four-quadrant drive – Solid State Controlled Drives – Machine learning and optimization techniques for electrical drives.

UNIT - II EMBEDDED SYSTEM FOR MOTOR CONTROL

Embedded Processors choice for motor control – Sensors and interface modules for Electric drives – IoT for Electrical drives applications

UNIT - III INDUCTION MOTOR CONTROL

Speed control methods – PWM techniques – VSI fed three–phase induction motor – Fuzzy logic Based speed control for three-phase induction motor- Embedded processor based three phase induction motor speed control.

UNIT - IV BLDC MOTOR CONTROL

Overview of BLDC Motor – Speed control methods – PWM techniques – Embedded processor based BDLC motor speed control.

UNIT - V SRM MOTOR CONTROL

Overview of SRM Motor – Speed control methods – PWM techniques – Embedded processor based SRM motor speed control.

TOTAL: 30 PERIODS

6

6

6

6

LABCOMPONENT:

30 PERIODS

- 1. Laboratory exercise: Use any System level simulator/MATLAB/open source platform to give hands-on training on simulation study on Electric drives and control.
 - a. Simulation of four quadrant operation and speed control of DC motor
 - b. Simulation of 3-phase inverter.
 - c. Simulation of Speed control of Induction motor using any suitable software package.
 - d. Simulation of Speed control of BLDC motor using any suitable software package.
 - e. Simulation of Speed control of SRM using any suitable software package
- 2. Seminar: IoT-based Control and Monitoring for DC Motor/any Electric drives.
- 3. Mini project.: Any Suitable Embedded processor-based speed control of Motors (DC/IM/BLDC/PMSM/SRM)

TOTAL: 60 PERIODS

TEXTBOOKS:

- R.Krishnan, "Electric Motor Drives–Modeling, Analysis and Control", Prentice-Hall of India Pvt. Ltd., New Delhi, 2010,1stEdition.
- Steve Kilts, "Advanced FPGA Design: Architecture, Implementation, and Optimization "Willey, 2007, 1st Edition.

REFERENCES:

- 1. Vedam Subramanyam, "Electric Drives–Concepts and Applications", Tata Mc Graw-Hill publishing company Ltd., New Delhi, 2002, 2nd Edition.
- 2. K.Venkataratnam, Special Electrical Machines, Universities Press, 2014, 1st Edition.
- 3. Steve Furber, 'ARM system on chip architecture', Addision Wesley, 2nd Edition 2015.
- 4. Ron Sass and Anderew G.Schmidt, "Embedded System design with platform FPGAs :Principles and Practices", Elsevier, 2010, 1st Edition.
- 5. Tim Wescott, Applied Control Theory for Embedded Systems, Elsevier, 2006, 1st Edition.

List of Open Source Software/Learning website:

- 1) <u>https://archive.nptel.ac.in/courses/108/104/108104140/</u>
- 2) <u>https://www.embedded.com/mcus-or-dsps-which-is-in-motor-control/</u>
- 3) <u>https://www.e3sconferences.org/articles/e3sconf/pdf/2019/13/e3sconf_SeFet2019_01004.</u> pdf
- 4) https://www.electronics-tutorials.ws/blog/pulse-width-modulation.html
- 5) http://kaliasgoldmedal.yolasite.com/resources/SEM/SRM.pdf

Course Na	me : EN	MBEDD	DED CO	ONTRO	DL FOF	RELEC	TRIC	DRIVE	S		Cour	se Code	: 20EEV4	4	
CO				C	ourse	Outcor	nes				Unit	K –CO	POs	PSOs	
C315V4.1	Interp	oret the	signifi	cance o	of embe	edded	control	of elec	trical d	rive	I	K2	1,2	1	
C315V4.2	Devel techn	loping iques f	knowl or mote	edge or cont	of Ma rol.	chine	learnii	ng an	d opti	mization	I	K2	1,2	1	
C315V4.3	Delive	er in sig	ght in to	o variou	us cont	rol stra	tegies	for elec	ctrical c	lrives.	II	K2	1,2	1	
C315V4.4	Expla induc	in the tion mo	speed otor.	control	operat	tion of	Embec	lded pr	ocesso	or based		K2	1,2	1	
C315V4.5	Discu BDLC	ss the C motor	speed	contro	l opera	tion of	Embeo	lded pr	ocesso	or based	IV	K2	1,2	1	
C315V4.6	Desci based	DLC motor. Impedded processor V K3 1,2,3 1 ased SRM motor. Impedded processor V K3 1,2,3 1													
						CO	-PO Ma	apping							
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
C315V4.1	1	1	2	2	1	-	-	-	-	-	-	-	2	1	
C315V4.2	2	1	3	2	1	-	-	-	-	-	-	-	2	1	
C315V4.3	3	2	3	3	3	-	-	-	-	-	-	-	1	3	
C315V4.4	3	2	3	3	3	-	-	-	-	-	-	-	3	3	
C315V4.5	3	2	1	2	1	-	-	-	1	-	-	-	2	2	
C315V4.6	3	2	2	2	2	-	-	-	1	-	-	-	2	2	

20EEV45 PROCESS MODELING AND SIMULATION L

L T P C 3 0 0 3

9

9

9

9

OBJECTIVES:

- To understand the process control loop and obtain the mathematical model of different processes.
- To educate on the conventional PID controller and it associated features and design thePID controller using different tuning techniques.
- To elaborate different types of control schemes such as cascade control, feed forwardcontrol etc.
- To educate on multivariable systems and multi-loop control.
- To educate on various industrial processes.

PRE-REQUISITE: NIL

UNIT - I PROCESS DYNAMICS

Need for process control – The process control loop – Continuous and batch processes – P & I diagram - Self-regulation - Interacting and non-interacting systems - Mathematical models of level, flow and thermal processes – Linearization of nonlinear systems.

UNIT - II PID CONTROLLER AND TUNING

Characteristic of ON-OFF, P, P+I, P+D and P+I+D control modes – Digital PID algorithm – Auto/manual transfer – Reset windup – Practical forms of PID controller – Evaluation criteria – IAE, ISE, ITAE and ¼ decay ratio – Tuning – Process reaction curve method and Z-N and Cohen-Coon techniques – Continuous cycling and damped oscillation methods – Auto-tuning.

UNIT - III ENHANCEMENT OF SINGLE-LOOP CONTROL & MODEL BASED 9 CONTROL SCHEMES

Cascade control – Split-range control – Feed-forward control – Ratio control – Inferential control – override control – Smith predictor control scheme – Internal model control (IMC) – IMC PID controller – Dynamic matrix control – Generalized predictive control.

UNIT - IV MULTIVARIABLE SYSTEMS & MULTI-LOOP CONTROL

Multivariable systems – Transfer matrix representation – Poles and zeros of MIMO system - Introduction to multi-loop control – Process Interaction – Pairing of inputs and outputs –The relative gain array (RGA) – Properties and applications of RGA – Multi-loop PID controller – Decoupling control – Multivariable PID controller.

UNIT - V CASE-STUDIES

Model predictive control – Control schemes for distillation column, CSTR, four-tank system and pH.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Stephanopoulos G, "Chemical Process Control", Pearson, 2015.
- 2. Bequette WB, "Process Control: Modeling, Design and Simulation", Prentice Hall India, 2003.

REFERENCES:

- 1. Seborg DE, Mellichamp DA, & Edgar TF, "Process Dynamics and Control", Wiley, 2013.
- 2. Chidambaram M, "Computer Control of Processes", Narosa, 2006.
- 3. Luyben WL, "Process Modeling, Simulation and Control for Chemical Engineers", 2013.
- 4. Johnson CD, "Process Control Instrumentation Technology", Pearson, 2015.
- 5. Coughanowr DR & Le Blanc SE, "Process Systems Analysis and Control", McGraw Hill, 2013.

Course Na	me : PF	ROCES	S MOD	ELING	AND S	SIMULA	TION				Cour	se Code	: 20EEV4	5	
CO				C	ourse	Outco	mes				Unit	K –CO	POs	PSOs	
C315V5.1	Ability	to app	oly kno	wledge	of ma	themati	ics, sci	ence, a	ind eng	ineering		K2	1,2	1	
C315V5.2	Ability desire	to de	esign a	and im	plemer SO pro	nt P/PI cesses.	/PID c	controlle	ers to	achieve	e II	K3	1,2,3	1	
C315V5.3	Ability	to und	erstand	the te	chniqu	es of T	uning p	rocess	es			K2	1,2	1	
C315V5.4	Ability	to u	ndersta	and an	d use	differ	ent sir	ngle-loo	p con	rol and		K2	1,2	1	
	mode	odel based controlschemes.													
C315V5.5	Ability	bility to analyze and design multivariable and multi-loop control IV K2 1,2 1													
	syster	ns.													
C315V5.6	Ability	to unc	derstan	d the v	arious	proces	ses nai	nely fo	ur-tank	system	, V	K2	1,2	1	
	pH pro	ocess,b	pioreact	or, disti	llation	column									
						CO	-PO Ma	apping							
CO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
C315V5.1	2	1	-	-	-	-	-	-	-	-	-	-	1	-	
C315V5.2	3	2	1	-	-	-	-	-	-	-	-	-	2	-	
C315V5.3	2	1	-	-	-	-	-	-	-	-	-	-	1	-	
C315V5.4	2	1	-	-	-	-	-	-	-	-	-	-	1	-	
C315V5.5	2	1	-	-		-	-	-	-	-	-	-	1	-	
C315V5.6	2	1	-	-	-	-	-	-	-	-	-	-	1	-	

20EEV46

DATA STRUCTURES AND ALGORITHMS

L T P C 3 0 0 3

OBJECTIVES:

- To understand the concepts of ADTs
- To understand the basics of algorithm analysis
- To Learn linear data structures lists, stacks, and queues
- To apply Tree and Graph structures
- To understand sorting, searching and hashing algorithms and their analysis.

PRE-REQUISITE:

Course Code: 20CS201 Course Name: Programming in C

UNIT - I INTRODUCTION TO DATA STRUCTURES AND ALGORITHM ANALYSIS 10

Introduction: Data Structures, Notion of an algorithm, Algorithm Efficiency and Analysis Framework, Asymptotic Notations and their properties. Linear Data Structures: Abstract Data Types (ADTs) – List ADT – Array-based implementation – Linked list implementation — Singly Linked Lists- Circularly Linked Lists- Doubly-Linked Lists – Applications of Lists – Polynomial Manipulation – All operations (Insertion, Deletion, Merge, Traversal). Implementation of algorithmic problems.

UNIT - II LINEAR DATA STRUCTURES – STACKS, QUEUES

Stack ADT – Operations – Applications – Evaluating arithmetic expressions - Conversion of Infix to postfix expression – Queue ADT – Operations – Circular Queue – Priority Queue – deQueue – Applications of Queues.

UNIT - III NON LINEAR DATA STRUCTURES – TREES

Tree ADT – Tree Traversals – Binary Tree ADT – Expression Trees – Applications of Trees – Binary Search Tree ADT –Threaded Binary Trees- AVL Trees – B-Tree – B+ Tree – Heap – Applications of heap.

UNIT - IV NON LINEAR DATA STRUCTURES – GRAPHS

Definition – Representation of Graph – Types of graph – Breadth-first traversal – Depth-first traversal – Topological Sort – Bi-connectivity – Cut vertex – Euler circuits – Applications of graphs.

UNIT - V SEARCHING, SORTING AND HASHING TECHNIQUES

Divide and Conquer Methodology: Comparison of Searching Techniques: Linear Search – Binary Search, Mathematical analysis of Binary Search. Sorting – Merge Sort, Quick Sort, Bubble sort – Selection sort – Insertion sort – Shell sort – Radix sort. Hashing- Hash Functions – Separate Chaining – Open Addressing – Rehashing – Extendible Hashing.

TOTAL: 45 PERIODS

8

9

9

TEXT BOOKS:

- 1. Mark Allen Weiss, Data Structures and Algorithm Analysis in C, 2nd Edition Reprint, Pearson Education, 2002.
- 2. Reema Thareja, Data Structures Using C, Second Edition, Oxford University Press, 2011.
- 3. Thomas H. Cormen, Charles E. Leiserson, Ronald L.Rivest, Clifford Stein Introduction to Algorithms, MIT Press, Third Edition, 2009.

REFERENCES:

- 1. Stephen G. Kochan, Programming in C, 3rd edition, Pearson Education, 2005.
- 2. Ellis Horowitz, Sartaj Sahni, Susan Anderson-Freed, Fundamentals of Data Structures in C, Second Edition, University Press, 2008.

OUTCOMES:

Course Na	me : D/	ATA ST	RUCT	URES A	AND AI	GORI	гнмѕ				Course	Code :	20EEV46	
CO				Co	ourse C	utcom	es				Unit	K –CO	POs	PSOs
C315V6.1	Expla	in the c	oncept	of asyn	nptotic	notatio	ns and	algorith	mic		I	K2	1,2,8,9,	1
	efficie	ncy wit	h prope	erties.	-			-					12	
C315V6.2	Descr	ibe abs	tract da	ata type	s and i	mpleme	ent vari	ous alg	orithmi	C	I	K2	1,2,8,9,	1
	proble	ems usi	ng arra	ys and	linked l	ist.							12	
C315V6.3	Apply	the diff	erent li	near da	ita struo	ctures li	ike stac	k and c	queue t	0	II	K3	1,2,3,8,	1
	variou	is comp	outing p	roblem	S.								9,12	
C315V6.4	Build	differen	t types	of trees	s and g	raphs a	and app	ly varic	us		III, IV	K3	1,2,3,8,	1
	opera	tions ar	nd their	applica	ations.								9,10,12	
C315V6.5	Analy	ze diffe	rent so	rting an	d searc	ching te	chniqu	es base	ed on ti	me	V	K4	1,2,3,4,	1
	and s	pace co	omplexi	ty of the	e algori	thms de	esigned	l using	divide a	and			8,9,10,	
	conqu	ier metl	nods.										12	
C315V6.6	Devel	op suita	able ha	shing a	lgorithn	n for ind	dexing of	data ite	ms into		V	K3	1,2,3,8,	1
	specif	ic locat	ions in	a hash	table c	onsider	ing coll	ision re	solutio	n			9,10,12	
	techni	ques.												
			r			CO-	PO Map	pping						
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C315V6.1	2	1	-	-	-	-	-	1	1	-	-	2	2	-
C315V6.2	2	1	-	-	-	-	-	1	1	-	-	2	3	-
C315V6.3	3	2	1	-	-	-	-	1	1	-	-	2	3	-
C315V6.4	3	2	1	-	-	-	-	1	1	1	-	2	3	-
C315V6.5	3	3	2	1	-	-	-	1	1	1	-	2	3	-
C315V6.6	3	2	1	-	-	-	-	1	1	1	-	2	3	-

KLNCE UG EEE R2020 (AY 2021-2022)

PROFESSIONAL ELECTIVE – V

20EEV51	HIGH VOLTAGE ENGINEERING	L	т	Ρ	С
		3	0	0	3

OBJECTIVES:

- Causes of over voltages in Power System and protection methods.
- Breakdown phenomenon in Gas, Liquid, Vacuum, Solid and Composite Dielectrics
- Generation of high AC& DC voltages and Impulse voltage & Current.
- Various methods of measurement of High Voltages and Currents.
- Testing of power apparatus and insulation coordination

PRE-REQUISITE:

Course Code: 20EE201 Course Name: Electric Circuit Analysis

UNIT-I OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS 9 Introduction to over voltages - Natural Causes of over voltages - Charge formation in the

clouds – Lightning phenomenon: Mechanism of lightning stroke, Mathematical modeling of lightning - Switching surges- Reflection and Refraction of Travelling waves-Protection against over voltages.

UNIT-II ELECTRICAL BREAKDOWN IN GAS, LIQUID and SOLID DIELECTRICS 9

Gaseous breakdown - Uniform field - Townsend criterion, Streamer theory -Pachen's law -Non-uniform fields - Corona discharges - Vacuum breakdown - Conduction and breakdown in pure and commercial liquids - Breakdown mechanisms in solid dielectrics.

UNIT-III GENERATION OF HIGH VOLTAGES AND HIGH CURRENTS 9

Generation of High DC Voltages: Voltage doubler, Cockcroft Walton Voltage multiplier and Vande-Graff generator- Generation of high AC voltages: Cascaded transformer, Resonant transformer, and Tesla coil -Generation of Impulse voltage: Single and Multistage impulse generator - MARX circuit and generation of impulse current - Tripping and control of impulse generators.

UNIT- IV MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS

High Resistance with series ammeter - Dividers, Resistance, Capacitance and Mixed dividers -Peak Voltmeter, Generating Voltmeters - Capacitance Voltage Transformers, Electrostatic Voltmeters - Sphere Gaps - High current shunts- Digital techniques in high voltage measurement.

UNIT-V HIGH VOLTAGE TESTING OF ELECTRICAL APPARATUS 9

Terminologies and Definitions - High voltage testing of electrical power apparatus as per standards: Insulators, Bushings, Isolators, Circuit Breakers, Cables, Transformers, and Surge Arrester - Insulation Coordination.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Naidu M.S. and Kamaraju V., "High Voltage Engineering", McGraw Hill, 6th Edition, 2020.
- 2. Wadhwa C.L., "High Voltage Engineering", New age publishers, 3rd Edition, 2012.
- 3. Kuffel E. and Zaengl W.S., "High Voltage Engineering Fundamentals", Pergamon press, Oxford, London, 2005.

REFERENCES:

- 1. L.L. Alston, 'High Voltage Technology', Oxford University Press, First Indian Edition, 2011.
- 2. Mazen Abdel Salam, Hussein Anis, Ahdab A-Morshedy, Roshday Radwan, High Voltage Engineering Theory & Practice, Second Edition Marcel Dekker, Inc., 2010
- 3. Subir Ray,' An Introduction to High Voltage Engineering' PHI Learning Private Limited, New Delhi, Second Edition, 2013.

OUTCOMES:

Course Na	me : HI	GH VO	LTAGE	E ENGI	NEERI	NG					Cours	e Code :	20EEV51	
CO				Co	ourse C	Dutcom	nes				Unit	K –CO	POs	PSOs
C4V51.1	Identi	fy the c	auses o	of over	voltage	and its	effects	s in pov	/er syst	em.	I	K2	1,2	1
C4V51.2	Expla	in the b	reakdo	wn Meo	chanisn	ns in So	olid, Liq	uid, ga	ses and	1	II	K2	1,2	1
	Comp	osite d	ielectric	S.										
C4V51.3	Analy	ze diffe	rent typ	be of Ge	eneratir	ng circu	it for hi	gh volta	age D.C	Cand		K4	1,2,5	1
	high v	oltage	A.C.											
C4V51.4	Expla	in the N	/leasure	ement c	of A.C a	nd D.C	high v	and cur	rent	IV	K2	1,2,5	1	
	using	approp	riate m	ethod.										
C4V51.5	Analy	ze the i	mporta	nce of	power a	apparat	us testi	ransien	t	V	K4	1,2,5	1	
	studie	S.												
C4V51.6	Under	stand t	he con	cept of	Insulati	on coo	rdinatio	n.			V	K2	1,2,5	1
						CO-	PO Ma	pping						
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C4V51.1	2	2	-	-	-	-	-	-	-	-	-	-	1	-
C4V51.2	2	2	-	-	-	-	-	-	-	-	-	-	1	-
C4V51.3	2	2	-	-	1	-	-	-	-	-	-	-	1	-
C4V51.4	2	2	-	-	1	-	-	-	-	-	-	-	1	-
C4V51.5	2	2	-	1	1	1	1	-	-	-	-	-	1	-
C4V51.6	2	2	-	-	1	-	-	-	-	-	-	-	1	-

KLNCE UG EEE R2020 (AY 2021-2022)

20EEV52	SMPS AND UPS (20EE844)	L	т	Ρ	С
		3	0	0	3

OBJECTIVES:

To impart knowledge about the following topics:

- Modern power electronic converters and its applications in electric power utility.
- Resonant converters and UPS

PRE-REQUISITE: Nil

UNIT - I DC-DC CONVERTERS

Principles of step down and step up converters – Analysis and state space modeling of Buck, Boost, Buck- Boost and Cuk converters.

UNIT - II SWITCHED MODEPOWER CONVERTERS

Analysis and state space modeling of fly back, Forward, Push pull, Luo, Half bridge and full bridge converters - control circuits and PWM techniques.

UNIT - III RESONANTCONVERTERS

Introduction – classification - basic concepts - Resonant switch - Load Resonant converters - ZVS , Clamped voltage topologies - DC link inverters with Zero Voltage Switching - Series and parallel Resonant inverters - Voltage control.

UNIT - IV DC-AC CONVERTERS

Single phase and three phase inverters, control using various (sine PWM, SVPWM and PSPWM) techniques, various harmonic elimination techniques - Multilevel inverters - Concepts - Types: Diode clamped - Flying capacitor - Cascaded types - Applications.

UNIT - V V POWER CONDITIONERS, UPS& FILTERS

Introduction - Power line disturbances - Power conditioners – UPS: offline UPS, Online UPS, Applications – Filters: Voltage filters, Series-parallel resonant filters, filter without series capacitors, filter for PWM VSI, current filter, DC filters – Design of inductor and transformer for PE applications – Selection of capacitors.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Simon Ang, Alejandro Oliva," Power-Switching Converters", Third Edition, CRC Press, 2010.
- Kjeld Thorborg, "Power Electronics In theory and Practice", Overseas Press, First Indian Edition2005.
- 3. M.H. Rashid Power Electronics handbook, Elsevier Publication, 2001

REFERENCES:

1. Philip T Krein, " Elements of Power Electronics", Oxford University Press

9

9

9

9

KLNCE UG EEE R2020 (AY 2021-2022)

- 2. Ned Mohan, Tore.M.Undel and, William. P.Robbins, Power Electronics converters, Applications and design- Third Edition- John Wiley and Sons- 2006
- 3. M.H. Rashid Power Electronics circuits, devices and applications-third edition Prentice Hall of India New Delhi, 2007.
- 4. Erickson, Robert W, "Fundamentals of Power Electronics", Springer, second edition, 2010.

OUTCOMES:

Course Name	SMPS:	S AND	UPS								Course	Code :20	EEV52	
CO				Co	ourse C)utcom	es				Unit	K –CO	POs	PSOs
C4V52.1	Expla	in the	opera	ation a	nd sta	ate spa	ace m	odeling	of D	C-DC	1	K2	1,2	1
	conve	erters												
C4V52.2	Desci	ribe the	operat	ion and	d state	space i	modelir	ng of sw	vitched	mode	2	K2	1,2	1
	powe	r conve	rters											
C4V52.3	Discu	iss the l	basic co	oncept	and op	eration	of reso	onverter	S	3	K2	1,2	1	
C4V52.4	Sumn	narize t	he PW	M techr	niques f	for DC-	AC con			4	K2	1,2	1	
C4V52.5	Expla	in the	opera	ation o	of Pow	ver co	ndition	ers, U	PS an	id its	5	K2	1,2	1
	applic	cations	in elect	ric pow	er utility	у.								
C4V52.6	Desci	ribe the	operat	ion of v	arious	types o	f filters				5	K2	1,2	1
						CO-P	О Мар	ping						
CO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C4V52.1	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C4V52.2	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C4V52.3	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C4V52.4	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C4V52.5	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C4V52.6	2	1	-	-	-	-	-	-	-	-	-	-	1	-

20EEV53

TESTING OF ELECTRIC VEHICLES

L T P C 3 0 0 3

OBJECTIVES:

- To know various standardization procedures
- To learn the testing procedures for EV & HEV components
- To know the functional safety and EMC
- To realize the effect of EMC in EVs
- To study the effect of EMI in motor drives and in DC-DC converter system

PRE-REQUISITE:

Course Code: 20EEV23 Course Name: Electric Vehicles and Power Management

UNIT - I EV STANDARDIZATION

9

Introduction – Current status of standardization of electric vehicles, electric Vehicles and Standardization - Standardization Bodies Active in the Field — Standardization activities in countries like Japan. The International Electro Technical Commission – Standardization of Vehicle Components.

UNIT - II TESTING OF ELECTRIC MOTORS AND CONTROLLERS 9 FOR ELECTRIC AND HYBRID ELECTRIC VEHICLES

Test Procedure Using M-G Set, electric motor, controller, application of Test Procedure, Analysis of Test Items for the Type Test - Motor Test and Controller Test (Controller Only).-Test Procedure Using Eddy Current Type Engine Dynamometer, Test Strategy, Test Procedure, Discussion on Test Procedure. Test Procedure Using AC Dynamometer.

UNIT - III FUNDAMENTALS OF FUNCTIONAL SAFETY AND EMC 9 Functional safety life cycle – Fault tree analysis – Hazard and risk assessment – software development – Process models – Development assessments –Configuration management – Reliability - Reliability block diagrams and redundancy - Functional safety and EMC - Functional safety and quality – Standards – Functional safety of autonomous vehicles.

UNIT - IV EMC IN ELECTRIC VEHICLES

Introduction - EMC Problems of EVs, EMC Problems of Motor Drive, EMC Problems of DC – DC Converter System, EMC Problems of Wireless Charging System, EMC Problem of Vehicle Controller, EMC Problems of Battery Management System, Vehicle EMC Requirements

UNIT - V EMI IN MOTOR DRIVE AND DC-DC CONVERTER 9 SYSTEM

Overview - EMI Mechanism of Motor Drive System, Conducted Emission Test of Motor Drive System, IGBT EMI Source, EMI Coupling Path, EMI Modelling of Motor Drive System. EMI in DC-DC Converter, EMI Source, The Conducted Emission High-Frequency, Equivalent Circuit of DC-DC Converter System, EMI Coupling Path

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Handbook of Automotive Power Electronics and Motor Drives, Ali Emadi, Taylor & Francis, 2005, 1stEdition.
- 2. Electromagnetic Compatibility of Electric Vehicle, Li Zhai, Springer 2021, 1stEdition.

REFERENCES:

- 1. EMC and Functional Safety of Automotive Electronics, Kai Borgeest, IET2018, 1stEdition.
- 2. EMI/EMC Computational Modeling Handbook, Druce Archambeault, colinbranch, Omar M.Ramachi Springer 2012, 2ndEdition.
- 3. Automotive EMC, Mark Steffika, Springer 2013,1stEdition.
- Electric Vehicle Systems Architecture and Standardization Needs, Reports of the PPP European Green Vehicles Initiative, Beate Müller, Gereon Meyer, Springer 2015, 1stEdition.

OUTCOMES:

Course Nar	ourse Name : TESTING OF ELECTRIC VEHICLES											Course Code :20EEV53				
CO				Co	ourse C)utcom	es				Unit	K –CO	POs	PSOs		
C4V53.1	Desc	ribe the	e status	s and o	ther de	etails of	fstanda	ardizati	on of E	Vs	1	K2	1,2	1		
C4V53.2	Illustr	ate the	e testing	g proto	cols for	r EVs a	and HE	V comp	ponent	5	2	K2	1,2	1		
C4V53.3	Expla	ain the	safety	cycle a	nd nee	/s	3	K2	1,2	1						
C4V53.4	Discu	iss the	proble	ms rela	-	4	K2	1,2	1							
C4V53.5	Deter	rmine t	he EMI	in mot	or drive	е					5	K2	1,2	1		
C4V53.6	Deter	rmine t	he EMI	in DC-	-DC co	nverter	⁻ syster	n.			5	K2	1,2	1		
						CO-	PO Ma	pping								
CO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
C4V53.1	2	1	-	-	-	-	-	-	-	-	-	-	1	-		
C4V53.2	2	1	-	-	-	-	-	-	-	-	-	-	1	-		
C4V53.3	2	1	-	-	-	-	-	-	-	-	-	-	1	-		
C4V53.4	2	1	-	-	-	-	-	1	-							
C4V53.5	2	2 1 - - - - - - -										-	1	-		
C4V53.6	2	1	-	-	-	-	-	-	1	-						

KLNCE UG EEE R2020 (AY 2021-2022)

20EEV54	SMART SYSTEM AUTOMATION	L	т	Ρ	С
		2	0	2	3

OBJECTIVES:

- To introduce the smart system technologies and its role in real time applications
- To teach the architecture and requirements of Home Automation
- To provide an insight into smart appliances and energy management concepts
- To familiarize the design and needs of smart wearable devices
- To teach the basics of robotics and its role for automation.

PRE-REQUISITE: NII

UNIT - I INTRODUCTION

Overview of a smart system – Hardware and software selection – Smart sensors and Actuators - Communication protocols used for smart systems.

UNIT - II HOME AUTOMATION

Home Automation – System Architecture - Essential Components - Design Considerations: Control Unit, Sensing Requirements, Communication, Data Security.

UNIT - III SMART APPLIANCES AND ENERGY MANAGEMENT

Significance of smart appliances for energy management Smart Meters: Significance, Architecture & Energy Measurement Technique - Security Considerations.

UNIT - IV SMART WEARABLE DEVICES

Body Area Networks – Sensors – communication protocol for Wearable devices – Application of Smart Wearable in Healthcare & Activity Monitoring.

UNIT - V EMBEDDED SYSTEMS AND ROBOTICS

Fundamental concepts in Robotics - Robots and Controllers components - Embedded processor based: pick and place robot – Mobile Robot Design - UAV.

30 PERIODS

LAB COMPONENTS:

- 1. Laboratory exercise: Use Arduino / Rpi / any other Embedded processors to give hands on training to understand concepts related to smart automation.
 - a) Hands on experiments based on Ubidots & Thing speak / Open-source Analytics Platform
 - b) Design and implementation of a smart home system.
 - c) Bluetooth Based Home Automation Project using Android Phone
 - d) GSM Based Home Devices Control
 - e) Pick and place robots using Arduino / any suitable Embedded processor
 - 2. Assignment: Revolution of Smart Automation system across the world and its current scope available in India
 - 3. Mini project: Design of a Smart Automation system (for any application of students choice)

30 PERIODS

6

6

6

6

TOTAL: 30+30 = 60 PERIODS

TEXT BOOKS:

- 1. Grimm, Christoph, Neumann, Peter, Mahlknechand Stefan, Embedded Systems for Smart Appliances and Energy Management, Springer 2013, 1st Edition
- 2. Kazem Sohraby, Daniel Minoli and Taieb Znati, Wireless Sensor Networks Technology, Protocols, and Applications, John Wiley & Sons, 2007, 1stEdition
- 3. Nilanjan Dey, Amartya Mukherjee, Embedded Systems and Robotics with Open-Source Tools, CRCpress, 2016, 1st Edition

REFERENCES:

- 1. Thomas Bräunl, Embedded Robotics, Springer, 2003
- 2. Raj Kamal, Embedded Systems Architecture, Programming and Design, McGraw-Hill, 2008
- 3. Karim Yaghmour, Embedded Android, O'Reilly, 2013
- 4. Steven Goodwin, Smart Home Automation with Linux and Raspberry Pi, Apress, 2013
- 5. C.K.Toh, AdHoc mobile wireless networks, Prentice Hall, Inc, 2002
- 6. Anna Ha'c, Wireless Sensor Network Designs, John Wiley & Sons Ltd, 2003
- 7. J.J.Craig, "Introduction to Robotics Mechanics and Control", Pearson Education
- 8. Y.Koren, "Robotics for Engineers", McGraw-Hill
- 9. Robert Faludi, Wireless Sensor Networks, O'Reilly, 2011

LIST OF OPEN SOURCE SOFTWARE / LEARNING WEBSITE:

- 1. <u>https://microcontrollerslab.com/home-automation-projects-ideas/</u>
- 2. <u>https://www.learnrobotics.org/blog/simple-robot/</u>
- 3. https://robolabor.ee/homelab/en/iot
- 4. <u>https://electrovolt.ir/wpcontent/uploads/2018/03/Exploring_Raspberry_Pi_Molloy_Derek_El</u> <u>ectroVolt.ir_.pdf</u>
- 5. <u>http://www.robot.bmstu.ru/files/books/(Ebook%20-%20English)%20Mcgraw-</u> <u>Hil,%20Pic%20Robotics%20--%20A%20Beginner'S%20Guide%20To%20Robotic.pdf</u>

OUTCOMES:

Course Na	Course Name : SMART SYSTEM AUTOMATION												Course Code : 20EEV54			
CO				C	ourse	Outco	mes				Unit	K –CO	POs	PSOs		
C4V54.1	Discu	ss the	e over\	∕iew a	nd co	mmuni	cation	proto	cols u	sed for	· 1	K2	1,2	1,2		
	smart	syster	ns.													
C4V54.2	Expla	in the S	System	Archite	ecture,	Essen	tial Co	mpone	nts and	l Design	2	K3	1,2,3,6,8,	1,2		
	Consi	ideratic	ons of	Home	Autom	nation.	Demo	nstrate	the B	luetooth			9,10			
	Based	d Home	e Autor	nation	Project	t using	Andro	id Phor	ne. Des	sign of a	l					
0.0/54.0	Smar	t Auton	nation s	system					- T-		0	140	40000	1.0		
C4V54.3	Descr	Tibe ti	ne Ar	cnitecti	ure, ⊨ of	cnnique,	3	КJ	1,2,3,6,8,	1,2						
	imple	ny C mentat	ion of a	emart	home	n anu			9,10							
C4V54 4	Sum	narize	the t	function		Body	Δrea	Netwo	rke 9	Sensors	4	K3	12368	12		
04034.4	comm	nunicat	ion nr	otocol	and	Applic	ations	of sn	nart M	/earable		110	9 10	1,2		
	device	es. Cor	nduct th	ne GSN	/ Base	d Hom	e Devi	ces Co	ntrol.				0,10			
C4V54.5	Outlin	e the	Fundar	nental	conce	ots and	d Conti	ollers	compo	nents of	5	K2	1,2	1,2		
	Robot	tics			•				•					,		
C4V54.6	Desig	n the	Embed	ded pr	ocesso	or base	d pick	and p	lace ro	bot and	5	K3	1,2,3,6,8,	1,2		
	Mobil	e Robo	ot. Illus	trate th	ne Pick	and p	place re	obots ι	ising A	rduino /	'		9,10			
	any s	uitable	Embeo	dded pr	ocesso	or.										
		1	1			CO	-PO Ma	apping								
CO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
C4V54.1	2	1	-	-	-	-	-	-	-	-	-	-	2	2		
C4V54.2	3	2	1	-	-	2	-	2	2	1	-	-	2	2		
C4V54.3	3 2 1 2 - 2 2 1										-	-	2	2		
C4V54.4	3	2	1	-	-	2	-	2	2	1	-	-	3	3		
C4V54.5	2	1	-	-	-	-	-	-	-	-	-	-	3	3		
C4V54.6	3	2	1	-	-	2	-	2	2	1	-	-	2	2		

20EEV55	COMPUTER CONTROL OF PROCESSES	L	Т	Ρ	С
		3	0	0	3

0 0 3

OBJECTIVES:

- To represent the linear time invariant System in discrete State Space form
- To analyze the controllability, observability and stability of a Discrete time System.
- To estimate model parameters from input/output measurements
- To Design Digital Controllers
- To Design Multi-loop and Multivariable Controllers for multivariable system

PRE-REQUISITE: NII

UNIT - I **DISCRETE STATE-VARIABLE TECHNIQUE** 9

State equation of discrete data system with sample and hold – State transition equation – Methods of computing the state transition matrix – Decomposition of discrete data transfer functions – State diagrams of discrete data systems - System with zero-order hold -Controllability and observability of linear time invariant discrete data system-Stability tests of discrete-data system

UNIT - II SYSTEM IDENTIFICATION 9

Identification of Non-Parametric Input-Output Models: - Transient analysis - Frequency analysis -Correlation analysis – Spectral analysis – Identification of Parametric Input-Output Models: -Least Squares Method - Recursive Least Square Method.

UNIT - III DIGITAL CONTROLLER DESIGN 9

Review of z-transform - Modified of z-transform - Pulse transfer function - Digital PID controller -Dead-beat controller and Dahlin's controller – Kalman's algorithm, Pole Placement Controller

UNIT - IV MULTI-LOOP REGULATORY CONTROL 9

Multi-loop Control - Introduction - Process Interaction - Pairing of Inputs and Outputs - The Relative Gain Array (RGA) - Properties and Application of RGA - Multi-loop PID Controller -Biggest Log Modulus Tuning Method – De-coupler.

UNIT - V MULTIVARIABLE REGULATORY CONTROL 9

Introduction to Multivariable control – Multivariable PID Controller – Multivariable Dynamic Matrix Controller – Case Studies:-Distillation Column, CSTR and Four-tank system.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Stephanopoulos, G., "Chemical Process Control-An Introduction to Theory and Practice", Prentice Hall of India, 1stEdition, 2015.
- 2. Sigurd Skogestad, Ian Postlethwaite, "Multivariable Feedback Control: Analysis and Design", John Wiley and Sons, 2005, 2nd Edition.

REFERENCES:

- 1. Thomas E.Marlin, Process Control-Designing Processes and Control systems for Dynamic Performance, Mc-Graw-Hill, 2000, 2nd Edition.
- 2. 2.Gopal,M., "Digital Control and State Variable Methods", Tata McGraw Hill, 4th Edition, 2017.
- 3. P.Albertosand A.Sala, "Multivariable Control Systems An Engineering Approach",

Springer Verlag, 1st Edition, 2004

OUTCOMES:

Course Na	ourse Name : COMPUTER CONTROL OF PROCESSES										Cour	Course Code : 20EEV55			
CO				C	ourse	Outco	mes				Unit	K –CO	POs	PSOs	
C4V55.1	Devel	op mat	themat	ical mo	dels fo	r discr	ete tim	e syste	ms usi	ng state	e 1	K3	1,2,3,4,	1,2	
	variat	ole tech	niques	and a	nalyze	the sta	ability o	f the sy	stems.						
C4V55.2	Const	truct n	nodels	from	input-c	output	data t	by leas	st squa	are and	2	K2	1,2,3,4	1,2	
	recurs	sive lea	ast squ	are me	thod.										
C4V55.3	Ability	∕ to de	sign d	ifferent	digital	contro	ollers to	o satis	fy the i	required	3	K3	1,2,3,4	1,2	
	criteri	on.													
C4V55.4	Desig	n a mu	ulti-loop	o contro	oller ar	nd mult	tivariab	le cont	roller fo	or multi-	4	K3	1,2,3,4	1,2	
	variat	ole syst	tems.												
C4V55.5	Ability	to des	sign mu	ultivaria	ıble dyr	namic r	matrix o	controll	er for ir	ndustria	5	K4	1,2,3,4	1,2	
	proce	sses.													
C4V55.6	Ability	to case	e studie	es on fu	iture im	plemer	ntation of	on cont	oller de	esign.	5	K3	1,2,3,4	1,2	
						CO	-PO Ma	apping							
CO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
C4V55.1	3	3	3	2	1	-	-	-	-	-	1	-	2	1	
C4V55.2	3	3	3	3	1	-	-	-	-	-	1	-	2	1	
C4V55.3	3	3	3	3	1	-	-	-	-	-	1	-	2	1	
C4V55.4	3	3	3	3	1	-	-	-	-	-	1	-	2	1	
C4V55.5	3	3	3	3	1	-	-	-	-	-	1	-	2	1	
C4V55.6	3	3	3	3	1	-	-	-	-	-	1	-	2	1	

Logic Controller Design - Fuzzy Logic Controller.

TEXT BOOKS:

- 1. N.P.Padhy, S.P.Simon, "Soft Computing with MATLAB Programming", Oxford University Press, 2015
- 2. S.N.Sivanandam, S.N.Deepa, "Principles of Soft Computing", Wiley India Pvt. Ltd., 2nd Edition, 2011
- 3. S.Rajasekaran, G.A.VijayalakshmiPai, "Neural Networks, Fuzzy Logic and Genetic Algorithm, Synthesis and Applications ", PHI Learning Pvt. Ltd., 2017

UNIT - II **ARTIFICIAL NEURAL NETWORKS**

9 Back propagation Neural Networks - Kohonen Neural Network -Learning Vector Quantization -Hamming Neural Network - Hopfield Neural Network- Bi-directional Associative Memory -Adaptive Resonance Theory Neural Networks- Support Vector Machines - Spike Neuron Models.

UNIT - III **FUZZY SYSTEMS**

fuzzy systems.

PRE-REQUISITE: NII

UNIT - I

20EEV56

OBJECTIVES:

Introduction to Fuzzy Logic, Classical Sets and Fuzzy Sets - Classical Relations and Fuzzy Relations -Membership Functions -Defuzzification - Fuzzy Arithmetic and Fuzzy Measures - Fuzzy Rule Base and Approximate Reasoning - Introduction to Fuzzy Decision Making.

UNIT - IV **GENETIC ALGORITHMS**

Basic Concepts- Working Principles - Encoding- Fitness Function - Reproduction - Inheritance Operators - Cross Over - Inversion and Deletion -Mutation Operator - Bit-wise Operators -Convergence of Genetic Algorithm.

UNIT - V **HYBRID SYSTEMS**

Hybrid Systems -Neural Networks, Fuzzy Logic and Genetic -GA Based Weight Determination -LR-Type Fuzzy Numbers - Fuzzy Neuron - Fuzzy BP Architecture - Learning in Fuzzy BP-Inference by Fuzzy BP - Fuzzy ArtMap: A Brief Introduction – Soft Computing Tools - GA in Fuzzy

INTRODUCTION TO SOFT COMPUTING

Introduction-Artificial Intelligence-Artificial Neural Networks-Fuzzy Systems-Genetic Algorithm and Evolutionary Programming-Swarm Intelligent Systems-Classification of ANNs-McCulloch and Pitts Neuron Model-Learning Rules: Hebbian and Delta- Perceptron Network-Adaline Network-Madaline Network.

To become familiar with various techniques like neural networks, genetic algorithms and

SOFT COMPUTING

To integrate various soft computing techniques for complex problems

To learn the basic concepts of Soft Computing

KLNCE UG EEE R2020 (AY 2021-2022)

L

3

Ρ

0

т

0

С

3

9

9

9

TOTAL: 45 PERIODS

REFERENCES:

- 1. Jyh-Shing Roger Jang, Chuen-Tsai Sun, EijiMizutani, "Neuro-Fuzzy and Soft Computing", Prentice-Hall of India, 2002
- 2. KwangH.Lee, "First course on Fuzzy Theory and Applications", Springer, 2005
- 3. George J. Klir and Bo Yuan, "Fuzzy Sets and Fuzzy Logic-Theory and Applications", Prentice Hall, 1996
- 4. James A. Freeman and David M. Skapura, "Neural Networks Algorithms, Applications, and Programming Techniques", Addison Wesley, 2003

OUTCOMES:

Course Na	me : SOFT COMPUTING								Course Code :20EEV56					
CO				Co	ourse C)utcom	es				Unit	K –CO	POs	PSOs
C4V56.1	Expla	in the o	differen	t catego	ories of	soft co	mputing	g techn	iques		1	K2	1,2,8,	-
				-				-					9	
C4V56.2	Illustr	ate neu	ural net	works r	nodelin	g for di	fferent	applica	tions		2	K3	1,2,3,	-
						-							8,9,12	
C4V56.3	Apply	fuzzy	design	principl	es for s	solving	various	fuzzy p	oroblem	IS	3	K3	1,2,3,	-
		-	-						8,9,12					
C4V56.4	Expla	in the o	differen	t opera	tors and	ı	4	K2	1,2,	-				
	-						÷		•				8,9,10	
C4V56.5	Illustr	ate the	technic	ques fo	r develo	oping h	ybrid fu	zzy bas	sed sys	tems	5	K3	1,2,3,5,6	-
				-			-	-	-				8,9,12	
C4V56.6	Apply	/ differe	nt soft	comput	ting too	ls to so	lve eng	ineerin	g proble	ems	5	K3	1,2,3,5,6	-
													8,9,12	
						CO-F	О Мар	ping						
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C4V56.1	2	1	-	-	-	-	-	2	2	-	-	-	-	-
C4V56.2	3	2	1	-	-	-	-	2	2	-	-	1	-	-
C4V56.3	3	2	1	-	-	-	-	2	2	-	-	1	-	-
C4V56.4	2	2 1 2 2 1											-	-
C4V56.5	3	3 2 1 - 1 1 - 2 2 1 -											-	-
C4V56.6	3	2	1	-	1	1	-	2	2	-	-	1	-	-

PROFESSIONAL ELECTIVE – VI

20EEV61ELECTRIC ENERGY GENERATION, UTILIZATIONLTPCAND CONSERVATION (20EE8A4)303

OBJECTIVES:

- To discuss the various sources of power generation.
- To understand the principle, design of illumination systems and energy efficiency lamps.
- To explain the various methods of industrial heating and welding.
- To Analyze the behavior & control of electric traction system.
- To understand the principle of Refrigerator and Air Conditioner

PRE-REQUISITE: Nil

UNIT - I

POWER GENERATION

Review of conventional methods – thermal, hydro and nuclear based power generation. Nonconventional methods of power generation – fuel cells - tidal waves – wind – geothermal – solar bio-mass - municipal waste. Cogeneration. Effect of distributed generation on power system operation.

UNIT- II ILLUMINATION ENGINEERING

Nature of radiation – definition – laws of illumination – lighting calculations – design of illumination systems – residential, industrial, commercial, flood lighting and street lighting – types of lamps – energy efficient lamps

UNIT-III HEATING AND WELDING 9 Role electric heating for industrial applications – Requirement of heating material – Design of heating element – Methods of heating: Resistance heating – Induction heating – Dielectric heating

heating element – Methods of heating: Resistance heating – Induction heating – Dielectric heating – Methods of welding: Resistance welding – Arc welding – welding generator, welding transformer and the characteristics.

UNIT- IV ELECTRIC DRIVES AND TRACTION 9

Fundamentals of electric drive - choice of an electric motor - application of motors for particular services - traction motors - characteristic features of traction motor - systems of railway electrification - electric braking - train movement and energy consumption - traction motor control - track equipment and collection gear.

UNIT-V REFRIGERATION AND AIR CONDITIONING

Refrigeration-Domestic refrigerator and water coolers - Air-Conditioning-Various types of airconditioning system and their applications, smart air conditioning units – Energy Efficient motors: Standard motor efficiency, need for efficient motors

TOTAL: 45 PERIODS

9

9

9

TEXT BOOKS:

- 1. Wadhwa, C.L., Generation, Distribution and Utilization of Electrical Energy, New Academic Science, 2011
- 2. Gupta, B.R., Generation of Electrical Energy, Eurasia Publishing House (P) Ltd, New Delhi,

2003.

3. S. Sivanagaraju, M. Balasubba Reddy, D. Srilatha,' Generation and Utilization of Electrical Energy', Pearson Education, 2010.

REFERENCES:

- 1. Dr. Uppal S.L. and Prof. S. Rao, 'Electrical Power Systems', Khanna Publishers, New Delhi, 15th Edition, 2014.
- 2. H.Partab, Art and Science of Utilisation of Electrical Energy", Dhanpat Rai and Co., New Delhi, 2004.

OUTCOMES:

Course Na	me: Ele	ectric E	nergy	n	Course Code: 20EEV61									
CO				Co	ourse O	utcom	es				Unit	K –CO	POs	PSOs
C4V61.1	Descr	ibe the	basic	princip	les & te	echnolo	ogies of	f variou	is rene	wable		K2	1,2	1,2
	and n	onrene	wable e	energy i	esourc	e-base	d powe	r gener	ation					
C4V61.2	Categ	orize c	lifferent	t light s	sources	and o	design	various	illumi	nation		K4	1,2,3,	1,2
	syster	ns for	the in	door li	ahtina	schem	es, fac	tory lic	ahting.	halls.			4	
	outdo	or lighti	ng sche	emes, f	lood lig	hting, s	treet lig	hting		, i				
C4V61.3	Class	ify diffe	rent me	ethods	ing in		K3	1,2,3	1,2					
	indust	ries.				_								
C4V61.4	Comp	ute the	e tractiv	ve effo	rt for tl	he pro	pulsion	of trai	n, nam	e the	IV	K3	1,2,3	1,2
	tractio	n moto	ors, list	the tra	ction m	otor co	ontrol, ti	rack eq	uipmer	nt and				
	collec	tion gea	ar.											
C4V61.5	Descr	ibe the	select	ion of	electric	al drive	es base	ed on t	he ind	ustrial	IV	K2	1,2	1,2
	applic	ations.												
C4V61.6	Expla	in the c	oncept	of Air c	onditio	ner and	l refrige	rator.			V	K2	1,2	1,2
	-					CO-I	PO Map	ping						
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C4V61.1	2	1	-	-	-	-	-	-	-	-	-	-	1	1
C4V61.2	3	3	2	1	-	-	-	-	-	-	-	-	3	1
C4V61.3	3	2	1	-	-	-	-	2	1					
C4V61.4	3	2	1	-	-	-	-	-	2	1				
C4V61.5	2	1	-	-	-	-	-	-	-	-	-	-	1	1
C4V61.6	2	1	-	-	-	-	-	-	-	-	-	-	1	1

20EEV62POWER ELECTRONICS FOR RENEWABLE ENERGYLTPCSYSTEMS3003

OBJECTIVES: To impart knowledge on the following Topics

- To learn the various types of renewable sources of energy.
- To understand the electrical machines to be used for wind energy conversion systems.
- To learn the principles of power converters used in solar PV system.
- To study the principle of power converters used in Wind system.
- To simulate the AC-DC, AC-AC Converters, Matrix Converters and PWM Inverters

PRE-REQUISITE:

Course Code: 20EE502, 20EE702 Course Name: Power Electronics, Renewable Energy Systems

UNIT - I INTRODUCTION TO RENEWABLE ENERGY SYSTEMS

9

Classification of Energy Sources — Importance of Non-conventional energy sources — Advantages and disadvantages of conventional energy sources-Environmental aspects of energy – Impacts of renewable energy generation on the environment-Qualitative study of renewable energy resources: Ocean energy, Bio-mass energy, Hydrogen energy-Solar Photovoltaic (PV),Fuel cells: Operating principles and characteristics, Wind Energy: Nature of wind, Types, control strategy, operating area.

UNIT - II ELECTRICAL MACHINES FOR WIND ENERGY 9 CONVERSION SYSTEMS

Construction, Principle of operation and analysis: Squirrel Cage Induction Generator (SCIG), Doubly Fed Induction Generator (DFIG)-Permanent Magnet Synchronous Generator (PMSG).

UNIT - III POWER CONVERTERS AND ANALYSIS OF SOLAR PV 9 SYSTEMS

Power Converters: Line commutated converters (inversion-mode)-Boost and buck-boost converters-selection of inverter, battery sizing, array sizing. Simulation of line commutated converters, buck/boost converters. Analysis: Block diagram of the solar PV systems - Types of Solar PV systems: Stand-alone PV systems, Grid integrated solar PV Systems - Grid Connection Issues.

UNIT - IV POWER CONVERTERS FOR WIND SYSTEMS

Power Converters: Three-phase AC voltage controllers-AC-DC-AC converters: uncontrolled rectifiers, PWM Inverters, Grid-Interactive Inverters- Matrix converter.

UNIT - V HYBRID RENEWABLE ENERGY SYSTEMS

Need for Hybrid Systems - Range and type of Hybrid systems - Case studies of Diesel - PV, Wind - PV, Micro hydel - PV, Biomass - Diesel systems - Maximum Power Point Tracking (MPPT).

TOTAL: 45 PERIODS

9

9

TEXT BOOKS:

- S.N.Bhadra, D.Kastha, & S.Banerjee "Wind Electrical Systems", Oxford University Press, 2009, 7th impression
- 2. Rashid.M.H "Power electronics Handbook", Academic press, 2ndEdition, 4thEdition,

2017

- **3.** Joshua Earnest, Tore Wizeliu, 'Wind Power Plants and Project Development', PHI Learning Pvt.Ltd, New Delhi, 2011
- 4. D.P.Kothari, K.C Singal, Rakesh Ranjan "Renewable Energy Sources and Emerging Technologies", PHI Learning Pvt. Ltd, New Delhi, 2013
- 5. Rai.G.D, "Solar energy utilization", Khanna publishers, 5th Edition, 2008
- 6. Rai G.D., Non-Conventional Energy Sources, Khanna Publishers, 2011
- 7. H.Khan, "Non-conventional Energy sources", Tata McGraw-hill Publishing Company, New Delhi, 2017, 3rd Edition.
- 8. Gray, L.Johnson, "Wind energy system", prentice hall of India, 2nd Edition, 2006.

REFERENCES:

- 1. Chetan Singh Solanki, "Solar Photovoltaics : Fundamentals, Technologies and Applications", PHI Learning Private Limited, New Delhi, 2011
- 2. Godfrey Boyle, "Renewable energy", Open University, Oxford University Press in association with the Open University, 2004.
- 3. Shobh Nath Singh, 'Non-conventional Energy resources' Pearson Education, 2015

OUTCOMES:

Course Nar	ne : Po	wer Ele	ectroni	cs for	Renew	able Er	nergy S	system	s		Course Code :20EEV62					
CO				Co	ourse C)utcom	es				Unit	K –CO	POs	PSOs		
C4V62.1	Discus	ss the v	/arious	types o	f renew	/able er	nergy s	ources			1	K2	1,2,3,4	1		
C4V62.2	Analyz	ze the p	perform	ance of	f IG,PM	ISG,SC	IG AND	D DFIG			2	K4	1,2,3,4	1		
C4V62.3	Analyz	ze diffe	erent po	ower co	nverter	rs name	ely AC t	o DC,D	C to D	C and	3	K4	1,2,3,4	1		
	Ac to	AC con	verters	for ren	ewable	energy	y source	es								
C4V62.4	Analyz	ze vario	ous ope	erating	s and	4	K4	1,2,3,4	1							
	solar	energy	system	IS												
C4V62.5	Analyz	ze vario	ous ope	rating r	nodes (of solar	energy	v syster	ns		4	K4	1,2,3,4	1		
C4V62.6	Devel	op max	imum p	ower p	oint tra	cking a	Igorithn	าร			5	K4	1,2,3,4	1		
						CO-	PO Ma	pping								
CO	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
C4V62.1	3	2	1	-	-	-	-	-	-	-	-	-	1	-		
C4V62.2	3	2	1	-	-	-	-	-	-	-	-	-	1	-		
C4V62.3	3	2	1	-	-	-	-	-	-	-	-	-	1	-		
C4V62.4	3	3 2 1										-	1	-		
C4V62.5	3	3 2 1									-	-	1	-		
C4V62.6	3	2	1	-	-	-	-	-	-	-	-	-	1	-		

20EEV63 GRID INTEGRATION OF ELECTRIC VEHICLES

L T P C 3 0 0 3

OBJECTIVES:

- To know the basic details of V2G
- To study the benefits & challenges of V2G
- To learn EV & V2G on the smart grids renewable energy systems
- To know the grid integration

PRE-REQUISITE: NIL

UNIT - I DEFINITION, And STATUS of V2G

Defining Vehicle to Grid (V2G) - History and Development of V2G. Incorporating V2G to the EV, Auditing and Metering, V2G in Practice, V2G - Power Markets and Applications. Electricity Markets and V2G Suitability, Long-Term Storage, Renewable Energy, and Other Grid Applications, Beyond the Grid: Other Concepts Related to V2G.

UNIT - II BENEFITS AND CHALLENGES OF V2G

Benefits of V2G, Technical Benefits: Storage Superiority and Grid Efficiency, Economic Benefits: EV Owners and Societal Savings, Environment and Health Benefits: Sustainability in Electricity and Transport, Other Benefits.

UNIT - III CHALLENGES TO V2G

Technical Challenges - Battery Degradation, Charger Efficiency, Aggregation and Communication, V2G in a Digital Society. The Economic and Business Challenges to V2G - Evaluating V2G Costs and Revenues, EV Costs and Benefits, Adding V2G Costs and Benefits Additional V2G Costs, The Evolving Nature of V2G Costs and Benefits. Regulatory and Political Challenges to V2G, V2G and Regulatory Frameworks, Market Design Challenges, Other V2G Regulatory and Legal Challenges.

UNIT - IV IMPACT OF EV AND V2G ON THE SMART GRID AND 9 RENEWABLE ENERGY SYSTEMS

Introduction - Types of Electric Vehicles - Motor Vehicle Ownership and EV Migration - Impact of Estimated EVs on Electrical Network - Impact on Drivers and the Smart Grid - Standardization and Plug-and-Play - IEC 61850 Communication Standard and IEC 61850-7-420 Extension.

UNIT - V GRID INTEGRATION AND MANAGEMENT OF EVS

Introduction - Machine to Machine (M2M) in distributed energy management systems - M2M communication for EVs - M2M communication architecture (3GPP) - Electric vehicle data logging - Scalability of electric vehicles -M2M communication with scheduling.

TOTAL: 45 PERIODS

9

9

9

TEXT BOOKS:

- 1. Advanced Electric Drive Vehicles, Ali Emadi, CRC Press 2017, 1st Edition.
- 2. Plug In Electric Vehicles in Smart Grids, Charging Strategies, Sumedha Rajakaruna, Farhad Shahnia and Arindam Ghosh, Springer, 2015, 1st Edition.

REFERENCES:

- 1. ICT for Electric Vehicle Integration with the Smart Grid, Nand Kishor; Jesus Fraile-Ardanuy, IET 2020, 1st Edition.
- 2. Vehicle-to-Grid: Linking Electric Vehicles to the Smart Grid, Junwei Lu and Jahangir Hossain, IET 2015, 1st Edition.
- 3. Lance Noel · Gerardo Zarazua de Rubens Johannes Kester · Benjamin K. Sovacool, Vehicle- to-Grid A Socio-technical Transition Beyond Electric Mobility, 2019, 1st Edition.

OUTCOMES:

Course Nar	ne : GF	RID INT	EGRA		F ELEC	CTRIC	VEHIC	LES			Course	Code :2	0EEV63	
CO				Co	ourse C)utcom	es				Unit	K –CO	POs	PSOs
C4V63.1	Expla	in the c	concept	s relate	d with '	V2G						K2	1,2	-
C4V63.2	Discu	ss the g	grid con	nectior	n of 3 pl	hase Q	inverte	r				K2	1,2	-
C4V63.3	Expla	in the	technic	al, ecc	nomics	s. busir	ness, re	egulato	ry&p	olitical		K2	1,2	-
	challe	enges re	elated v	vith V2	G									
C4V63.4	Demo	onstrate	the im	pact of	EV and		IV	K2	1,2	-				
C4V63.5	Demo	onstrate	e the i	npact	of EV	and V	'2G on	renew	vable e	energy	IV	K2	1,2	-
	syste	m												
C4V63.6	Expla	in the c	concept	of grid	integra	ition an	d mana	igemen	t of EV	s	V	K2	1,2	-
						CO-	PO Maj	oping						
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C4V63.1	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C4V63.2	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C4V63.3	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C4V63.4	2	2 1										-	1	-
C4V63.5	2	1	-	-	-	-	-	-	1	-				
C4V63.6	2	1	-	-	-	-	-	-	-	-	-	-	1	-
20EEV64	EMBEDDED SYSTEM FOR	L	Т	Р	С									
---------	-------------------------	---	---	---	---									
	AUTOMOTIVE APPLICATIONS	2	0	2	3									

OBJECTIVES:

- To expose the students to the fundamentals and building of Electronic Engine Control systems.
- To teach on sensor functional components for vehicles.
- To discuss on programmable controllers for vehicles management systems.
- To teach logics of automation & communication techniques for vehicle communication.
- To introduce the infotainment system development.

PRE-REQUISITE: Nil

UNIT - I INTRODUCTION TO AUTOMOTIVE SYSTEMS

Overview of Automotive systems, fuel economy, air-fuel ratio, emission limits and vehicle performance; Electronic control Unit – open-source ECU.

UNIT - II SENSORS AND ACTUATORS FOR AUTOMOTIVES

Review of automotive sensors – sensors interface to the ECU, Smart sensor and actuators for automotive applications

UNIT - III VEHICLE MANAGEMENT SYSTEMS

Energy Management system – Adaptive cruise control - anti-locking braking system – Safety and Collision Avoidance.

UNIT - IV ONBOARD DIAGONSTICS AND COMMUNICATION

OBD, Vehicle communication protocols - Bluetooth, CAN, LIN, FLEXRAY and MOST.

UNIT - V RECENT TRENDS

Navigation – Autonomous car – Role of IoT in Automotive systems.

30 PERIODS

30 PERIODS

LAB COMPONENTS:

- 1. Laboratory exercise: Use MATLAB SIMULINK / equivalent simulation / open source tools
 - a) Simulation study of automotive sensors and actuators components
 - b) Adaptive cruise control, Anti-Lock Braking System
 - c) CAN Connectivity in an Automotive Application using vehicle network toolbox
 - d) Interfacing a sensor used in car with microcontroller.
 - e) Establishing connection between Bluetooth module and microcontroller.
- 2. Assignment: AUTOSAR
- 3. Mini project: Battery Management system for EV batteries.

TOTAL: 30+30 = 60 PERIODS

6

6

6

6

TEXT BOOKS:

- 1. William B. Ribbens, "Understanding Automotive Electronics", Elseiver, 8th Edition, 2017.
- 2. Jurgen, R., "Automotive Electronics Hand Book", McGraw Hill, 2nd Edition, 1999.
- 3. L.Vlacic, M.Parent, F.Harahima, "Intelligent Vehicle Technologies", SAE International, 2001,1st Edition, 2017.

REFERENCES:

- 1. Ali Emedi, Mehrdedehsani, John M Miller, "Vehicular Electric power system land, Sea, Air and Space Vehicles", Marcel Decker, 2004, 1st Edition.
- 2. Jack Erjavec, Jeff Arias, "Alternate Fuel Technology Electric, Hybrid & Fuel Cell Vehicles", Cengage, 2012, 2nd Edition.
- 3. Electronic Engine Control technology Ronald K Jurgen Chilton's guide to Fuel Injection Ford 2nd Edition, 2004.
- 4. Automotive Electricals / Electronics System and Components, Tom Denton, 5th Edition, 2017.
- 5. Uwe Kiencke, Lars Nielsen, "Automotive Control Systems: For Engine, Drive line, and Vehicle", Springer; 1st Edition, 2005.
- 6. Automotive Electricals Electronics System and Components, Robert Bosch Gmbh, 5th Edition, 2014.
- 7. Automotive Hand Book, Robert Bosch, Bently Publishers, 10th Edition, 2018.

LIST OF OPEN SOURCE SOFTWARE / LEARNING WEBSITE:

- 1. <u>https://www.autosar.org/fileadmin/ABOUT/AUTOSAR_EXP_Introduction.pdf</u>
- 2. <u>https://microcontrollerslab.com/can-communication-protocol/</u>
- 3. <u>https://ackodrive.com/car-guide/different-types-of-car-sensors/</u>
- 4. <u>https://www.tomtom.com/blog/automated-driving/what-is-adaptive-cruise-control/</u>
- 5. <u>https://prodigytechno.com/difference-between-lin-can-and-flexray-protocols/</u>
- 6. <u>https://www.synopsys.com/automotive/what-is-autonomous-car.html</u>

OUTCOMES:

Course Na	me : El	MBED	DED S	STEM	FOR A	AUTON	ΙΟΤΙΝ	E APPI		ONS	Cour	se Code	e : 20EEV64	ł	
CO				С	ourse	Outco	mes				Unit	K –CO	POs	PSOs	
C4V64.1	Outlin	e the c	overvie	w of Au	Itomoti	ve syst	tems				1	K2	1,2	1,2	
C4V64.2	Sumn autom autom SIMU	narize notive notive LINK /	the c applica sensor equiva	peratic itions. s and lent sin	on of Condu actua nulatior	Smart ict an itors c n / opei	senso experi compor n sourc	or and ment t nents l ce tools	actua o Simu Jsing	ators fo ulate the MATLAI	e B	K3	1,2,3,5,6, 8,9,10	1,2	
C4V64.3	Expla contro cruise / equi	in the ol syste contro valent	Embe ems. C ol, Anti- simulat	edded onduct Lock E ion / op	conce an ex Braking ben sou	pts for operime Syste urce too	^r vehic ent to m Usin ols	cle ma Simula Ig MAT	nagem te the LAB SI	ent an Adaptiv IMULINI	d 3 e K	К3	1,2,3,5,6, 8,9,10	1,2	
C4V64.4	Discu comm CAN netwo open	ommunication protocols. Conduct an experiment to Simulate the AN Connectivity in an Automotive Application using vehicle etwork toolbox Using MATLAB SIMULINK / equivalent simulation / pen source tools Describe the operation of Autonomous car and Navigation. Conduct 5 K3 1,2,3,5,6, 1,2 Conduct 5 K3 1,2,3,5,6, 1,2,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,													
C4V64.5	Descr an e micro open	open source tools													
C4V64.6	Infer to to kno desig Estab micro	the imp owledg n and lish t control	proved e upgr its app he co ler	employ adatior plicatior onnecti	/ability n on re n in au on bo	and er ecent tr itomoti etween	ntrepre rends i ve sys n Blue	neursh in emb tems. etooth	ip capa edded Demon modu	acity due system strate te ile ane	e 5 s o d	КЗ	1,2,3,5,6, 8,9,10	1,2	
	DO 4	DO 2	DO 2	DO 4	DOF		-PO Ma	apping	DOO	DO40	D044	DO40	D004	DQQQ	
	2	1	P03	P04	PU5	P06	P07	P08	P09	P010	P011	P012	2	2	
C4V64.1	3	2	- 1	-	2	- 2	-	2	2	- 1	-	-	2	2	
C4V64.3	3	2	1	-	2	2	-	2	2	1	-	-	2	2	
C4V64.4	3	2	1	-	2	2	-	2	2	1	-	-	3	3	
C4V64.5	3	2	1	-	2	2	-	2	2	1	-	-	3	3	
C4V64.6	3	2	1	-	2	2	-	2	2	1	-	-	2	2	

OBJECTIVES:

- To introduce the functional elements of Robotics.
- To impart knowledge on the direct and inverse kinematics.
- To introduce the manipulator differential motion and control.

PRINCIPLES OF ROBOTICS

- To educate on various path planning techniques.
- To introduce the dynamics and control of manipulators.

PRE-REQUISITE:

Course Code: 20EE504 Course Name: Control systems

UNIT I BASIC CONCEPTS

Brief history-Types of Robot technology-Robot classifications and specifications-Design and control issues- Various manipulators – Sensors - work cell - Programming languages.

UNIT II DIRECT AND INVERSE KINEMATICS

Mathematical representation of Robots - Position and orientation – Homogeneous transformation-Various joints- Representation using the Denavit Hattenberg parameters -Degrees of freedom-Direct kinematics-Inverse kinematics- SCARA robots- Solvability – Solution methods-Closed form solution.

UNIT III MANIPULATOR DIFFERENTIAL MOTION AND STATICS

Linear and angular velocities-Manipulator Jacobian-Prismatic and rotary joints–Inverse -Wrist and arm singularity - Static analysis - Force and moment Balance.

UNIT IV PATH PLANNING

Definition-Joint space technique-Use of p-degree polynomial-Cubic polynomial-Cartesian space technique - Parametric descriptions - Straight line and circular paths - Position and orientation Planning.

UNIT V DYNAMICS AND CONTROL

Lagrangian mechanics-2DOF Manipulator-Lagrange Euler formulation-Dynamic model – Manipulator control problem-Linear control schemes-PID control scheme-Force control of robotic manipulator.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. R.K.Mittal and I.J.Nagrath, 'Robotics and Control', Tata McGraw Hill, New Delhi, 4th Reprint, 2005.
- 2. JohnJ.Craig ,'Introduction to Robotics Mechanics and Control', Third edition, Pearson Education, 2009.
- M.P.Groover, M.Weiss, R.N. Nageland N. Godrej, 'Industrial Robotics', McGraw-Hill Singapore, 1996.

9

9

9

9

L T P C 3 0 0 3

9

20EEV65

REFERENCES:

- 1. Ashitava Ghoshal, 'Robotics-Fundamental Concepts and Analysis', Oxford University Press, Sixth impression, 2010.
- 2. K. K.Appu Kuttan, 'Robotics', I K International, 2007.
- 3. Edwin Wise, 'Applied Robotics', Cengage Learning, 2003.
- 4. R.D.Klafter, T.A.Chimielewski and M.Negin, 'Robotic Engineering–An Integrated Approach', Prentice Hall of India, New Delhi, 1994.
- 5. B.K.Ghosh, 'Control in Robotics and Automation: Sensor Based Integration', Allied Publishers, Chennai, 1998.
- S.Ghoshal, "Embedded Systems & Robotics Projects using the 8051 Microcontroller", Cengage Learning, 2009

OUTCOMES:

Course Na	me : PF	RINCIP	LES OI	F ROB	OTICS						Cour	se Code	: 20EEV6	5
CO				C	ourse	Outco	mes				Unit	K –CO	POs	PSOs
C4V65.1	Expla	in basi	c conce	ept of ro	botics.						1	K2	1,2	1,2
C4V65.2	Expla	in the k	kinemat	ics of re	obotic s	system.					2	K2	1,2	1,2
C4V65.3	Desci	ribe Ins	trumen	tation s	ystems	and th	eir app	lication	S.		3	K2	1,2	1,2
C4V65.4	Expla	in the c	different	tial mot	ion and	l statics	in robo	otics.			4	K2	1,2	1,2
C4V65.5	Expla	in the v	/arious	path pla	anning	techniq	lues.				5	K2	1,2	1,2
C4V65.6	Expla	in the c	dynamio	cs and o	control	in robo			5	K2	1,2	1,2		
CO	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C4V65.1	2	1	-	-	-	-	-	-	-	-	-	-	1	1
C4V65.2	2	1	-	-	-	-	-	-	-	-	-	-	1	1
C4V65.3	2	2 1										-	1	1
C4V65.4	2	2 1									-	-	1	1
C4V65.5	2	1	-	-	-	-	-	-	-	1	1			
C4V65.6	2	1	-	-	-	-	-	-	-	-	-	-	1	1

20EEV66

BIOMEDICAL INSTRUMENTATION

т Ρ С L 3 0 0 3

OBJECTIVES:

- To Introduce Fundamentals of Biomedical Engineering
- To understand the measurement of non-electrical parameters and diagnostic procedure.
- To study measurement of certain important electrical parameters and analysis.
- To understand the basic principles in imaging techniques.
- To understand the basic knowledge in life assisting and therapeutic devices.

PRE-REQUISITE:NIL

UNIT-I FUNDAMENTALS OF BIOMEDICAL ENGINEERING

Cell and its structure – Resting and Action Potential – Propagation of potential -Nervous system and its fundamentals - Cardiovascular systems- Respiratory systems -- Kidney and blood flow --Basic components of a biomedical system- Physiological signals and transducers - selection criteria - Piezoelectric, ultrasonic transducers -Temperature measurements -Fibre optic temperature sensors.

NON ELECTRICAL PARAMETERS MEASUREMENT AND UNIT-II **DIAGNOSTIC PROCEDURES**

Measurement of blood pressure - Cardiac output - Heart rate - Heart sound - Pulmonary function measurements - spirometer - Photo Plethysmography, Body Plethysmography - Blood Gas analysers, pH of blood -measurement of blood pCO2, pO2, finger-tip oxymeter - ESR, GSR measurements.

UNIT – III **ELECTRICAL PARAMETERS ACQUISITION AND ANALYSIS** 9 Electrodes – Limb electrodes – floating electrodes – pregelled disposable electrodes - Micro. needle and surface electrodes - Amplifiers, Preamplifiers, differential amplifiers, chopper amplifiers - Isolation amplifier - ECG - EEG - EMG - ERG - Lead systems and recording methods - Typical waveforms - Electrical safety in medical environment, shock hazards - leakage current-Instruments for checking safety parameters of biomedical equipment.

UNIT – IV **IMAGING MODALITIES AND ANALYSIS**

Radio graphic and fluoroscopic techniques - Computer tomography - MRI - Ultrasonography -Endoscopy – Thermography –Different types of biotelemetry systems - Retinal Imaging – Imaging application in Biometric systems.

UNIT – V LIFE ASSISTING, THERAPEUTIC AND ROBOTIC DEVICES Pacemakers – Defibrillators – Ventilators – Nerve and muscle stimulators – Diathermy – Heart – Lung machine - Audio meters - Dialysers - Lithotripsy - Laser therapeutic for eye - Robotic surgery –Orthopaedic prostheses fixation – Tele medicine

TEXT BOOKS:

- 1. Leslie Cromwell, "Biomedical Instrumentation and Measurement", Prentice Hall of India, 2018.
- 2. Khandpur R.S. Handbook of Biomedical Instrumentation, Tata McGraw-Hill, 2nd edition, 2014.

REFERENCES:

- 1. John G. Webster, Medical Instrumentation Application and Design, John Wiley and sons, 5th Edition. 2020.
- 2. R.Anandanatarajan, Biomedical Instrumentation and Measurements, PHI Learning Private Limited, 2011.

114

9

a

9

9

TOTAL: 45 PERIODS

3. Ed. Joseph D. Bronzino, The Biomedical Engineering Hand Book, 4thEdition, Boca Raton, CRC Press LLC, 2015.

Course Nar	ne :BIC	OMEDI	CAL IN	STRUM	IENTA	TION				Со	urse Co	de :20EE	EV66		
CO				Cou	ırse Ou	itcome	S			ι	Jnit	K-CO	POs	PSOs	
C4V66.1	Expla respi	ain the ration s	philoso system.	phy of t	the hea	rt, lung	, blood	circulat	ion and	ł	1	K2	1,2	-	
C4V66.2	Desc parar	ribe the neters.	e conce	pt of m	easure	ment o	f non-el	lectrical			2	K2	1,2	-	
C4V66.3	Expla elect	ain the rical ori	various igin.	sensin	ig and r	neasur	ement	devices	of		3	K2	1,2	-	
C4V66.4	Desc biom	ribe the edical o	e impor device.	tance c	of electr	ical saf	ety in v	arious			3	K2	1,2	-	
C4V66.5	Expla their	plain the construction and working of imaging device and 4 K2 1,2													
C4V66.6	Expla and t	ain the herape	workin utic eq	g of m uipmen	edical : ťs.	assista	nce/tec	hniques	s, robot	tic	5	K2	1,2	-	
						CO-F	PO map	oping							
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
C4V66.1	2	1	-	1	-	-	-	-	-	-	-	-	-	-	
C4V66.2	2 1									1	-	-	-	-	
C4V66.3	2	2 1									-	-	-	-	
C4V66.4	2	1	-	-	-	-	-	-	-	-	-	-	-	-	
C4V66.5	2	1	-	-	-	-	-	-	-	-	-	-	-	-	
C4V66.6	2	1	-	-	-	-	-	-	-	-	-	-	-	-	

20EEV71 UNDER GROUND CABLE ENGINEERING

L T P C 3 0 0 3

OBJECTIVES: To impart knowledge on the following topics

- Understanding Power Cable Characteristics and Applications.
- Cable Manufacturing.
- Installation of underground power cables
- Underground cable System Fault Locating.
- Testing and maintenance of Underground cable system.
- Cable Performance and Field Assessment of Power Cables

PRE-REQUISITE: NII

UNIT - I INTRODUCTION TO ELECTRICAL POWER CABLES 9 Development of Linderground Cables - Electric Lighting - Distribution of Energy for Lighting -

Development of Underground Cables – Electric Lighting – Distribution of Energy for Lighting – Paper Insulated Cables – Underground Residential Distribution Systems – Medium Voltage Cable Development.

UNIT - II CABLE ARCHITECHTURE, DIELECTRIC THEORY AND CABLE 9 CHARACTERISTICS

Architecture of Underground Cabling System – Basic Dielectric Theory of Cable – Conductors – Armourand Protective Finishes – Cable Characteristics: Electrical - Fundamentals of Electrical Insulation Materials - Electrical Properties of Cable Insulating Materials - Cable Standards and Quality Assurance - Cable design parameters- Current Carrying Capacity - Short-circuit Ratings.

UNIT - III SUPPLY DISTRIBUTION SYSTEMS AND CABLES

Supply Distribution Systems - Distribution Cable Types, Design and Applications – Paper Insulated Distribution Cables - PVC Insulated Cables - Polymeric Insulated Distribution Cables for 6-30 kV - Manufacture of Distribution Cables - Joints and Terminations for Distribution Cables – Testing of Distribution Cables.

UNIT - IV TRANSMISSION SYSTEMS AND CABLES 9

Basic Cable Types for A.C. Transmission - Self-contained Fluid – filled Cables – Gas Pressure Cables - High Pressure Fluid-filled Pipe Cables - Polymeric Insulated Cables for Transmission Voltages – Techniques for Increasing Current Carrying Capacity – Transmission Cable Accessories and Jointing for Pressure – assisted and Polymeric Cables.

UNIT - V CABLE INSTALLATION, TESTING, MAINTENANCE

Installation of Transmission Cables - Splicing, Terminating, and Accessories – Sheath Bonding and Grounding - Testing of Transmission Cable Systems - Underground System Fault Locating - Field Assessment of Power Cable Systems- Condition monitoring tests —PD measurements.

TOTAL: 45 PERIODS

9

9

TEXT BOOKS:

- 1. William Thue, 'Electrical Power Cable Engineering', CRC Press Taylor & Francis Group., 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL33487-2742, 3rd Edition 2017.
- G.F.Moore, 'Electric Cables Handbook' Third edition, Blackwell Science Ltd, 9600 Garsington Road, Oxford OX42DQ, UK., January 2017.

REFERENCES:

- 1. Leonard L. Grigsby, 'Electrical Power Cable Engineering' CRC Press, Marcel Dekker, 3rd Edition2012.
- 2. Christian Flytkjaer Jensen, Online Location of Faults on AC Cables in Underground Transmission Systems (Springer Theses), 2014,March.
- 3. K. H. Ali et al.: Industry Practice Guide for Underground Cable Fault-Finding in the LVDN:<u>https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9807279</u>, June 2022.

OUTCOMES:

Course Na	me: UN	IDER G	ROUN	D CAB	LE ENG	GINEE	RING				Course	Code:	20EEV7 [,]	1	
CO				Co	ourse O	utcom	es				Unit	K –CO	POs	PSOs	
C4V71.1	Descr	ibe the	develo	pment	of unde	rground	d cable	system	າ.		1	K2	1,2	1,2	
C4V71.2	Summ	narize t	he arch	itecture	e of UG	cable	and ph	ysical a	and ele	ctrical	2	K2	1,2	1,2	
	chara	cteristic	s of the	e UG ca	able.										
C4V71.3	Discu	ss the o	different	types	of cable	e used	in distri	bution a	system.		3	K2	1,2	1,2	
C4V71.4	Expla	in the L	Indergr	ound ca	ables u	sed in t	ystem		4	K2	1,2	1,2			
C4V71.5	Sumn	mmarize the cable installations procedures and practices. 5 K2 1,2 1,2													
C4V71.6	Discu	scuss the theory /methodology of cable fault detection and 5 K2 1,2 1,2													
	rectific	cation, t	testing	and ma	intenar	nce									
						CO-P	О Мар	ping							
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
C4V71.1	2	1	-	-	-	-	-	-	-	-	-	-	1	1	
C4V71.2	2	1	-	-	-	-	-	-	-	-	-	-	1	1	
C4V71.3	2	2 1											1	1	
C4V71.4	2	1	-	-	-	-	-	-	-	-	1	1			
C4V71.5	2	1	-	-	-	-	-	-	-	-	-	1	1		
C4V71.6	2	1	-	-	-	-	-	-	-	-	-	-	1	1	

20EEV72

MULTILEVEL POWER CONVERTERS

L т Ρ С 3 0 0 3

OBJECTIVES: To impart knowledge on the following Topics

- To learn multilevel topology (Symmetry &Asymmetry) with common DC bus link.
- To study the working of cascaded H-Bridge, Diode Clamped and Flying Capacitor MLI.
- To study the working of MLI with reduced switch count.
- To simulate three level diode clamped MLI and three level flying capacitor based MLI with resistive and reactive load
- To simulate the MLI with reduced switch count

PRE-REQUISITE:

Course Code: 20EE502

Course Name: Power Electronics

UNIT - I **MULTILEVEL TOPOLOGIES**

Introduction – Generalized Topology with a Common DC bus – Converters derived from the generalized topology – symmetric topology without a common DC link – Asymmetric topology.

UNIT - II CASCADED H-BRIDGE *MULTILEVELINVERTERS

Introduction - H-Bridge Inverter, Bipolar Pulse Width Modulation, Unipolar Pulse Width Modulation. Multilevel Inverter Topologies, CHB Inverter with Equal DC Voltage, H-Bridges with Unequal DC Voltages - PWM, Carrier-Based PWM Schemes, Phase-Shifted Multicarrier Modulation, Level-Shifted Multicarrier Modulation, Comparison Between Phaseand Level-Shifted PWM Schemes-Staircase Modulation

UNIT - III DIODE CLAMPED MULTILEVEL CONVERTER

Introduction - Converter structure and Functional Description - Modulation of Multi level converters – Voltage balance Control – Effectiveness Boundary of voltage balancing in DCMC converters - Performance results

UNIT - IV FLYING CAPACITOR MULTI LEVEL CONVERTER 9 Introduction – Flying Capacitor topology – Modulation scheme for the FCMC – Dynamic

voltage balance of FCMC.

UNIT - V MULTI LEVEL CONVERTER WITH REDUCED SWITCH COUNT

Multi level inverter with reduced switch count - structures, working principles and pulse generation methods.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Rashid M.H, "Power Electronics Circuits, Devices and Applications", Prentice Hall India, Third Edition, New Delhi, 2014 Pearson 4th edition.
- 2. Rashid.M.H, "Power electronics Handbook", Academic press, 2ndEdition, 4thEdition, 2017
- 3. Sergio Alberto Gonzalez, Santiago Andres Verne, Marialnes Valla, "Multi level Converters for Industrial Applications". CRC Press. 22-Jul-2013. 2017 .1st Edition.
- 4. BinWu, Meh di Narimani, High Power Converters and AC drives by IEEE press 2017, 2ndEdition.

9

9

9

REFERENCES:

- 1. Thomas A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice, D.Grahame Holmes, John Wiley & Sons, Oct-2003, 1stEdition.
- 2. Fang Lin Luo, Hong Ye, Advanced DC/AC Inverters: Applications in Renewable Energy, CRC Press, 22-Jan-2013, 2017, 1st Edition.
- 3. Hani Vahedi, Mohamed Trabelsi, Single-DC-Source Multi level Inverters, Springer, 2019, 1st Edition.
- 4. Ersan Kabalcı, Multilevel Inverters Introduction and Emergent Topologies, Academic Press Inc, 2021,1st Edition.

OUTCOMES:

Course Nan	ne : ML	JLTILE	VEL P	OWER	CONV	ERTE	RS				Course	Code :2	0EEV72		
CO				Co	ourse O	utcom	es				Unit	K –CO	POs	PSOs	
C4V72.1	Exam with a	ine the nd with	e differ	ent top Clink c	ologie: apacito	s of m er	ulti lev	el inve	erters (MLIs)	1	K3	1,2,3,9	1	
C4V72.2	Exam	ine the	e perfo	ormanc	e of N	/ILI_sw	vitch B	ipolar	Pulse	Width	2	K3	1,2,3,9	1	
	Modu	lation (PWM)	Unipol	ar PW	M Carr	ier-Bas	sed PV	/M Sch	nemes					
	Phase	e Level	Shinted		carrier	Nodula	ation								
C4V72.3	Demo diode switch	nstrate clam count	e the word t	orking LI, flyir	princip ng capa	oles of acitor N	Casca /ILI and	ded H. d MLI v	Bridge	MLI, duced	3	К3	1,2,3,9	1	
C4V72.4	Analy: MLI.	/ze the voltage balancing performance in Diode clamped 4 K3 1,2,3,9 1													
C4V72.5	Simula with F	nulate three level, capacitor clamed and diode clamped MLI 4 K3 1,2,3,9 1 h R and RI load													
C4V72.6	Simul	ate	MLI	with I	reduce	d swit	tch co	onfigura	ation	using	5	K3	1,2,3,9	1	
	funda	mental	switch	ing sch	ieme										
						CO-	РО Ма	pping							
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
C4V72.1	3	2	1	-	-	-	-	-	1	-	-	-	1	-	
C4V72.2	3	2	1	-	-	-	-	-	1	-	-	-	1	-	
C4V72.3	3	2	1	-	-	-	-	-	1	-	-	-	1	-	
C4V72.4	3	2	1	-	-	-	-	-	1	-	-	-	1	-	
C4V72.5	3	2	1	-	-	-	-	-	1	-	-	-	1	-	
C4V72.6	3	2	1	-	-	-	-	-	1	-	-	-	1	-	

20EEV73 INTELLIGENT CONTROL OF ELECTRIC VEHICLES

L T P C 2 0 2 3

OBJECTIVES:

- To design and drive the mathematical model of a BLDC motor and its characteristics
- To learn the different control schemes for BLDC motor
- To study the basics of fuzzy logic
- To study the FPGA & VHDL basics
- To implement fuzzy logic control of BLDC motor in real time

PRE-REQUISITE: NIL

UNIT - I MATHEMATICAL MODEL AND CHARACTERISTICS 6 ANALYSIS OF THE BLDC MOTOR

Structure and Drive Modes - Basic Structure, General Design Method, Drive Modes. Mathematical Model, Differential Equations, Transfer Functions, State-Space Equations. Characteristics Analysis, Starting Characteristics, Steady-State Operation, Dynamic Characteristics, Load Matching Commutation Transient.

UNIT - II SPEED CONTROL FOR ELECTRIC DRIVES 6

Introduction -PID Control Principle, Anti windup Controller, Intelligent Controller. Vector Control. Control applied to BLDC motor.

UNIT - III FUZZY LOGIC 6

Membership functions: features, fuzzification, methods of membership value assignments Defuzzification: lambda cuts - methods - fuzzy arithmetic and fuzzy measures: fuzzy arithmetic extension principle - fuzzy measures - measures of fuzziness -fuzzy integrals - fuzzy rule base and approximate reasoning : truth values and tables, fuzzy propositions, formation of rules decomposition of rules, aggregation of fuzzy rules, fuzzy reasoning-fuzzy inference systems, overview of fuzzy expert system-fuzzy decision making.

UNIT - IV FPGA AND VHDL BASICS 6

Introduction – FPGA Architecture-Advantages-Review of FPGA family processors- Spartan 3, Spartan 6 and Spartan 7. VHDL Basics- Fundamentals-Instruction set-data type-conditional statements- programs like arithmetic, sorting, PWM generation, Speed detection.

UNIT - V REAL TIME IMPLEMENTATION

Inverter design, identifying rotor position via hall effect sensors, open loop and fuzzy logic control of 48 V BLDC motor using FPGA.

30 PERIODS

30 PERIODS

6

LAB COMPONENT:

- Design and simulate speed controller for induction motors in EV for both dynamic and steady state performance
- Simulate a fuzzy logic controller based energy storage system for EV.
- Simulate a Fuzzy logic controller for BLDC motor

TOTAL: 30+30 = 60 PERIODS

TEXT BOOKS:

- 1. Electric Powertrain Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles, John G. Hayes, G. Abas Goodarzi, Wiley 1st Edition 2018.
- 2. VHDL Primer, A (3rd Edition), Jayaram Bhasker, Prentice Hall, 1st Edition 2015.
- 3. Iqbal Hussain, "Electric and Hybrid Vehicles: Design Fundamentals, Third Edition" CRC Press, Taylor & Francis Group, 2021, 1st Edition.

REFERENCES:

- 1. Chang-liang, Permanent Magnet Brushless DC Motor Drives and Controls, Xia Wiley 2012, 1st Edition.
- 2. M.N. Cirstea, A. Dinu, J.G. Khor, M. McCormick, Neural and Fuzzy Logic Control of Drives and Power Systems, Newnes publications, 1st Edition, 2002.
- 3. Wei Liu, Hybrid Electric Vehicle System Modeling and Control, Wiley 2017, 2nd Edition
- 4. Electric and Plug-in Hybrid Vehicle Networks Optimization and Control, Emanuele Crisostomi, Robert Shorten, Sonja Stüdli, Fabian Wirth, CRC Press, 1st Edition. 2018.

Course Nar	ne : IN	FELLIG	ENT C	ONTRO	OL OF	ELECT	RIC VE	HICLE	S		Course	Code :2	0EEV73	
CO				Co	ourse C)utcom	es				Unit	K –CO	POs	PSOs
C4V73.1	Desig	n the	mathen	natical	model	of a Bl	LDC m	otor ar	nd to di	iscuss	1	K3	1,2,3	-
	about	its cha	racteris	stics										
C4V73.2	Demo	nstrate	the PII	D contro	ol, and	windup	contro	ller, Inte	elligent		2	K3	1,2,3	-
	Contro	oller an	d Vecto	or Conti	rol, Cor	ntrol ap	plied to	BLDC	motor.					
C4V73.3	Illustr	ate the	basics	of fuzz	y logic :	system					3	K2	1,2	-
C4V73.4	Desci	ribe the	basics	of VHI	DL appl	ied to c	ontrol o			4	K2	1,2	-	
C4V73.5	Descr	ibe the	basics	of FPC	GA app	lied to d			4	K2	1,2	-		
C4V73.6	Desig	n and	impler	K3	1,2,3	-								
	motor	' using	FPGA i	n real t	ime.									
						CO-	PO Ma	pping						
CO	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C4V73.1	3	2	1	-	-	-	-	-	-	-	-	-	1	-
C4V73.2	3	2	1	-	-	-	-	-	-	-	-	-	1	-
C4V73.3	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C4V73.4	2	1	-	-	-	-	-	-	-	-	-	-	1	-
C4V73.5	2	1	-	-	-	-	-	-	-	-	-	1	-	
C4V73.6	3	2	1	-	-	-	-	-	-	-	-	-	1	-

20FFV74	VLSI DESIGN	L	Т	Ρ	
		3	0	0	

3 0 0

С

OBJECTIVES:

- To study the fundamentals of CMOS circuits and its characteristics.
- To learn the design and realization of combinational Circuits •
- To gain knowledge about Seguential logic circuits.
- To educate on Architectural choices and performance tradeoffs involved in designing and realizing the circuits in CMOS technology
- To learn the different FPGA architectures and testability of VLSI circuits

PRE-REQUISITE:

Course Code: 20EE505

Course Name: Microprocessors, Microcontrollers and Applications

MOS TRANSISTOR PRINCIPLE UNIT - I

NMOS and PMOS transistors, Process parameters for MOS and CMOS, Electrical properties of CMOS circuits and device modeling, Scaling principles and fundamental limits, CMOS inverter scaling, propagation delays, Stick diagram, Layout diagrams.

UNIT - II **COMBINATIONAL LOGIC CIRCUITS**

Combinational Logic Design, Elmore's constant, Pass transistor Logic, Transmission gates, static and dynamic CMOS design. Power dissipation – Low power design principles.

UNIT - III SEQUENTIAL LOGIC CIRCUITS

Static and Dynamic Latches and Registers, Timing issues, pipelines, clock strategies, Memory architecture and memory control circuits, Low power memory circuits, Synchronous and Asynchronous design.

UNIT - IV DESIGNING ARITHMETIC BUILDING BLOCKS

Data path circuits, Architectures for ripple carry adders, carry look ahead adders, High speed adders, accumulators, Multipliers, dividers, Barrel shifters, speed and area tradeoff.

UNIT - V **IMPLEMENTATION STRATEGIES**

Full custom and Semi custom design, Standard cell design and cell libraries, FPGA building block architectures, FPGA interconnect routing procedures

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Jan Rabaey, Anantha Chandrakasan, B.Nikolic, "Digital Integrated Circuits: A Design Perspective", Second Edition, Prentice Hall of India, 2016.
- 2. N.Weste, K.Eshraghian, "Principles of CMOS VLSI Design", Second Edition, Addision Wesley 2017.

REFERENCES:

1. A.Pucknell, Kamran Eshraghian, "BASIC VLSI Design", Fourth Edition, Prentice Hall of

9

9

9

9

India,2017.

- 2. Jacob Baker "CMOS: Circuit Design, Layout, and Simulation, Third Edition", Wiley IEEE Press 2010.
- 3. Sung-Mo kang, Yusuf leblebici, Chulwoo Kim "CMOS Digital Integrated Circuits: Analysis & Design",4th edition, McGraw Hill Education,2013.

OUTCOMES:

Course N	ame :V	'LSI DE	SIGN						Course Co	ode :20E	EV74			
СО				Co	ourse C)utcom	es				Unit	K –CO	POs	PSOs
C4V74.1	Expla	in the c	concept	s of dig	ital buil	ding bl	ocks us	sing MC	S trans	sistor.		K2	1,2	-
C4V74.2	Descr	ibe con	nbinatio	onal MC)S circu	uits and	power	strateg	ies		II	K2	1,2	-
C4V74.3	Illustr	ate the	conce	ot of Se	equentia	al Circu	its and	low po	wer me	emory		K2	1,2	-
	circui	ts.												
C4V74.4	Expla	in the a	arithme	tic build	ing blo	cks and	d memo	systems	5	IV	K2	1,2	-	
C4V74.5	Discu	iss the	concep	t of full	custom	and se	emi cus	sign		V	K2	1,2	-	
C4V74.6	Expla	in the F	PGA ir	ntercon	nect ro	uting pr	rocedur			V	K2	1,2	-	
						CO	-PO Ma	apping						
CO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C4V74.1	2	1	-	-	-	-	-	-	-	-	-	-	-	-
C4V74.2	2	1	-	-	-	-	-	-	-	-	-	-	-	-
C4V74.3	2	1	-	-	-	-	-	-	-	-	-	-		
C4V74.4	2	1	-	-	-	-	-	-	-	-	-	-		
C4V74.5	2	1	-	-	-	-	-	-	-	-	-	-	-	
C4V74.6	2	1	-	-	-	-	-	-	-	-	-	-	-	-

20EEV75	MACHINE MONITORING SYSTEM	L 3	т 0	P 0	C 3
OBJECTIVES: • To make effective of • To Impart • To give back • To study for • To provid	the students familiarize with the concept of condition-bas utilization of machines. the knowledge of artificial intelligence for machinery fau asic knowledge on vibration monitoring. the machinery vibrations using signal processing technic e knowledge on FMECA.	sed mai Ilt diagn jues.	ntenan losis.	ice for	
PRE-REQUISITE	E: Nil				
UNIT-I Machinery cond	INTRODUCTION TO MACHINE CONDITION MON ition monitoring - Present status - Fault prognosis - Fu	I TORIN Iture ne	IG eeds.		9
UNIT-II Maintenance st maintenance – E	MACHINERY MAINTENANCE rategies – Reactive, Preventive, and Predictive Bath tub curve – Failure Modes Effects and Criticality	– Ben Analysi	efits s (FME	of plai ECA).	9 nned
UNIT-III Characteristics Experimental mo vibration analysis	INTRODUCTION TO MACHINERY VIBRATION AND I of Vibration systems – Mode shapes & operation dal analysis – Principles of vibration monitoring – Mach s.	IONITC al def inery fa	DRING lection aults di	shape agnose	9 es – ed by
UNIT- IV FFT analysis – ⁻ analysis – Health	SIGNAL PROCESSING IN MACHINERY MONIT Time domain analysis – Time-frequency analysis – S condition of compressor & engine.	ORING Ignal filt	i tering -	– Ceps	9 strum
UNIT-V Machine Learnir Classification teo Distillation colum	MACHINE LEARNING FOR CONDITION MONIT ng: Feature extraction and feature selection method chniques – Case studies of condition monitoring in N n.	' ORING s – Fe uclear p	; ature plant c	reducti compon	9 on – ents,

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Cornelius Scheffer and Paresh Girdhar, "Practical Machinery Vibration Analysis and Predictive Maintenance", Elsevier, 2004, 1st Edition.
- 2. A. R. Mohanty, "Machinery Condition Monitoring: Principles and Practices", CRC Press, Taylor & Francis, 1st Edition, 2017.

REFERENCES:

1. Stephen Marsland, Machine Learning: An Algorithmic Perspective, 2nd Edition, 2014, CRC, Press.

KLNCE UG EEE R2020 (AY 2021-2022)

- 2. Collacot, "Mechanical Fault Diagnosis and Condition Monitoring", Chapman- Hall, 1st Edition, 2011.
- 3. Davies, "Handbook of Condition Monitoring Techniques and Methodology", Springer, 1st Edition, 2011.

OUTCOMES:

Course Na	me : M	ACHINI	E MON	ITORIN	IG SYS	ТЕМ					Cour	se Code	e : 20EEV7	5
CO				C	ourse	Outco	mes				Unit	K –CO	POs	PSOs
C4V75.1	Identi	fy the fa	aults in	machin	ery L1.						1	K3	1,2,3,4,5	1,2
C4V75.2	Choos	se the	proper	mainte	enance	strateg	gies an	d cond	ition m	onitoring	2	K3	1,2,3,4	1,2
	techni	ques fo	or identi	fication	of failu	ire in a	machir	ne L3.						
C4V75.3	Const	ruct a c	lassifie	er mode	l for ma	achine	learning	g based	l fault d	liagnosis	5 3	K3	1,2,3,4	1,2
	L5.													
C4V75.4	Predic	ot the fa	aulty co	ompone	ent in a	machi	ne by a	analyziı	ng the	acquirec	4	K2	1,2,3,4	1,2
	vibrati	on sign	als L2.											
C4V75.5	Analy	ze & bu	ild a m	odel us	ing mo	dern to		5	K4	1,2,3,4	1,2			
C4V75.6	Under	stand t	he con	cept of	Machin	e learn	ing				5	K2	1,2,3,4	1,2
						CO	-PO Ma	apping						
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C4V75.1	1	1	1	1	1	1	1	1	1	1	1	1	1	2
C4V75.2	3	2	2	2	1	1	1	1	1	1	1	1	1	2
C4V75.3	3	3	3	3	1	1	1	1	1	2				
C4V75.4	2	2	1	2	1	1	1	1	1	1	2			
C4V75.5	3	3	3	2	1	1	1	1	1	1	1	1	1	2
C4V75.6	3	3	3	2	1	1	1	1	1	1	1	1	1	2

20EEV76	ENERGY STORAGE SYSTEMS	L	Т	Ρ	С
		3	0	0	3

OBJECTIVES:

Students will be able to:

- Understand the various types of energy storage Technologies. •
- Analyze thermal storage system.
- Analyze different battery storage technologies
- Analyze the thermodynamics of Fuel Cell
- Study the various applications of energy storage systems

UNIT-I INTRODUCTION

Necessity of energy storage - types of energy storage - comparison of energy storage technologies - Applications.

UNIT-II THERMAL STORAGE SYSTEM

Thermal storage - Types - Modeling of thermal storage units - Simple water and rock bed storage system – pressurized water storage system – Modelling of phase change storage system – Simple units, packed bed storage units - Modelling using porous medium approach, Use of TRNSYS.

UNIT-III ELECTRICAL ENERGY STORAGE

Fundamental concept of batteries – measuring of battery performance, charging and discharging, power density, energy density, and safety issues. Types of batteries - Lead Acid, Nickel -Cadmium, Zinc Manganese dioxide, Li-ion batteries - Mathematical Modelling for Lead Acid Batteries - Flow Batteries.

UNIT-IV FUEL CELL 9 Fuel Cell – History of Fuel cell, Principles of Electrochemical storage – Types – Hydrogen oxygen cells, Hydrogen air cell, Hydrocarbon air cell, alkaline fuel cell, detailed analysis - advantages and disadvantages.

UNIT-V ALTERNATE ENERGY STORAGE TECHNOLOGIES

Flywheel, Super capacitors, Principles & Methods – Applications, Compressed air Energy storage, Concept of Hybrid Storage – Applications, Pumped Hydro Storage – Applications.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Ibrahim Dincer and Mark A. Rosen, 'Thermal Energy Storage Systems and Applications', John Wiley & Sons, 3rd Edition, 2021.
- 2. Ru-shi Liu, Lei Zhang and Xueliangsun, 'Electrochemical technologies for energy storage and conversion', Wiley publications, 2nd Volume set ,2012.
- 3. James Larminie and Andrew Dicks, 'Fuel cell systems Explained', Wiley publications, 3rd Edition, 2018.

126

9

9

9

REFERENCES:

- 1. Lunardini.V.J, 'Heat Transfer in Cold Climates', John Wiley and Sons 1981, 1st Edition.
- 2. Schmidt.F.W. and Willmott.A.J., 'Thermal Energy Storage and Regeneration', Hemisphere Publishing Corporation, 1981, 1st Edition.

Course Nar	ne : EN	IERGY	STOR	AGE S	YSTEM	S				Co	urse Co	de :20EE	V76	
CO				Coι	urse Ou	utcome	S				Unit	K-CO	POs	PSOs
C4V76.1	Unde	erstand	differer	nt types	storag	e techn	ologies			1		K2	1,2	1
C4V76.2	Desi	gn a the	ermal st	torage s	system	2		K4	1,3	1				
C4V76.3	Analy	ze the	thermo	dynam	ics of fu	3		K4	1,3	1				
C4V76.4	Pred acqu	ict the ired vib	faulty ration s	compo signals l	nent in L2.	a ma	chine t	by anal	yzing t	he 4		K2	1,3	1
C4V76.5	Analy appli	/ze the cations	e appi	opriate	stora	ge tec	hnologi	es for	differe	ent 5		K4	1,3	1
C4V76.6	Explo	ore the	alterna	te energ	gy stora	age tech	nnologie	es.		5		K3	2,6,8	1
						CO-	PO ma	pping						
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C4V76.1	3	1		-	-	-	-	-	-	-	-	-	2	-
C4V76.2	3	-	2	-	-	-	-	-	-	-	-	-	2	-
C4V76.3	3	-	2	-	-	-	-	-	-	-	-	-	2	-
C4V76.4	3	-	2	-	-	-	-	-	-	-	-	-	2	-
C4V76.5	3	-	2	-	-	-	-	-	-	-	-	-	2	-
C4V76.6	-	3	-	-	-	2	-	1	-	-	-	-	2	-

20EEV81	SUBSTATION ENGINEERING AND AUTOMATION	L	т	Р	С
		3	0	0	3

0 0 3

9

9

9

OBJECTIVES:

- To help engineering students to have a holistic understanding of the concepts behind • substation engineering and design.
- The course aims to give an exposure to the students to the requirements of practical • aspects including an overview of civil and mechanical aspects.
- Course aims to enhance the knowledge, and give the practical guidelines for site selection, • construction, protection along with maintenance, safety in a substation.
- It also aims at providing knowledge about state-of-the-art technology in substation • automation system
- To help engineering students to have a holistic understanding of the concepts behind • substation engineering and design.

PRE-REQUISITE: Nil

UNIT-I

SUBSTATION DESIGN DEVELOPMENT

Substation Introduction and Classifications, Different bus bar switching schemes for Substation. Standards and Practices, Factors Influencing Substation Design - Altitude, Ambient Temperature, Earthquake and seismic zones, pollution and corrosion etc., Testing of Electrical Equipment, Concept and development of Single Line Diagram. Requirement of substation calculation.

UNIT-II SUBSTATION EQUIPMENT 9 Selection and sizing of main substation equipment: Transformer, Isolator, Circuit Breaker, surge arrestor, Instrument transformers, classification of equipment with a practical overview, and the performance parameters. Classifications of MV Switchgear and Key Design Parameters, MV/LV Switchgear construction and design of control scheme. Station Auxiliary equipment: Diesel Generator System, Basics of AC/DC Auxiliary Power System & Sizing of

Aux. Transformer, DC System Components, Battery Sizing & charger Sizing, DG Set Classification, and sizing. Introduction to gas insulated substation: Operating principle of GIS, Advantage over AIS, construction of GIS

UNIT-III PROTECTION AND SUBSTATION AUTOMATION

Power System protection, Overcurrent and Earth Fault protection and coordination. Distribution Feeder Protection, Transformer – Unit/Main Protection, Familiarization of NUMERICAL Relays, distance/differential protection for transmission line. Substation Automation: Evolution of Substation Automation, Communication System Fundamentals-Protocol fundamental and choosing the right protocol. Substation integration and automation functional architecture, Substation signal list - DI, DO, AI, AO- Bay Control Unit (BCU), Remote Terminal Unit RTU.

UNIT-IV SUBSTATION DESIGN & LAYOUT ENGINEERING

Layout aspects of Outdoor Air Insulated Substation and GIS: Statutory Clearances, Equipment Layout engineering aspects for Outdoor Substation/GIS and related calculations, and guide lines, Cable routing layout, Erection Key Diagram (EKD), switchyard earthing design as per IEEE80, Importance and Types of Earthing, Earthing Design, Types of Earthing Material, Direct stroke

Lightning Protection for switchyard with IS/ IEC 62305. LV Cables - Power & Control, MV Cables, Methods for Cable Installation, Practical aspects of Cable Sizing, Cable accessories, Illumination System Design.

UNIT-V

INTERFACE ENGINEERING

9

Civil & Structural Engineering - Familiarization of site development plan, equipment supports structures, foundation for equipment, familiarization of control building and substation building, infrastructure development, Mechanical System- Fire Detection, Alarm System and Fire Suppression System for transformer, Heating, Ventilation and Air-conditioning (HVAC) for Substation

TEXT BOOKS:

TOTAL: 45 PERIODS

- 1. Ibrahim Dincer and Mark A. Rosen, 'Thermal Energy Storage Systems and Applications', John Wiley & Sons, 3rd Edition, 2021.
- 2. Ru-shiLiu, Lei Zhang and Xueliangsun, 'Electrochemical technologies for energy storage and conversion', Wiley publications, 2nd Volume set, 2012.
- 3. James Larminie and Andrew Dicks, 'Fuel cell systems Explained', Wiley publications, 3rd Edition, 2018.

REFERENCES:

- 1. Lunardini.V.J, 'Heat Transfer in Cold Climates', John Wiley and Sons 1981, 1st Edition.
- 2. Schmidt.F.W. and Willmott.A.J., 'Thermal Energy Storage and Regeneration', Hemisphere Publishing Corporation, 1981, 1st Edition.

OUTCOMES:

C4V81.5

C4V81.6

AT THE END OF THE COURSE, LEARNERS WILL BE ABLE TO:

Course Na	me: SU	BSTA	ΓΙΟΝ Ε	NGINE	ERING	AND A	UTOM	ATION			Course (Code: 20	DEEV81	
СО				Co	ourse C)utcom	es				Unit	K –CO	POs	PSOs
C4V81.1	Under	rstand	the key	/ decidi	ng fact	ors inv	olved i	n subs	tation c	lesign	1	K2	1,2,3,5,6	1
	and o	peratio	n.		-								,7,8,12	
C4V81.2	Know	Know about the sizing and selection of equipment which forms part										K2	1,2,3,4,5	1
	of sub	of substation											,6,8,9,12	
C4V81.3	Know	about	compos	site lay	out des	ign asp	pects of	f the su	Ibstatio	n with	3	K2	1,2,3,4,5	1
	differe	ent serv	vices an	d the c	halleng	es inclu	uding st	tatutory	cleara	nces.			,6,8,9,12	
C4V81.4	Under	rstand	about	Interdis	ciplinar	y aspe	ects inv	volved i	in subs	station	4	K2	1,2,3,6,7	1
	desigr	า											,8,9,12	
C4V81.5	Under	rstand	differer	nt prote	ection	and co	ontrol s	scheme	involv	ed in	4	K2	1,2,3,4,6	1
	substa	ation de	esign										,7,8,9,12	
C4V81.6	Know	abou	ut sub	station	auto	mation	syste	em ai	nd dif	ferent	5	K2	2,3,4,6,8	1
	comm	unicati	on pro	otocol	involve	d for	efficie	nt ope	ration	of a			,12	
	substa	ation												
						<u> </u>	-PO Ma	apping		-		-		
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C4V81.1	1	3	2	-	2	1	3	2	-	-	-	3	3	-
C4V81.2	3	3	3	3	2	3	-	1	2	-	-	2	3	-
C4V81.3	3	2	3	3	1	3	-	2	2	-	-	3	3	-
C4V81.4	3	1	2	-	-	3	2	1	2	-	-	2	3	-

3

20EEV82 CONTROL OF POWER ELECTRONICS CIRCUITS L T

3 0 0 3

Ρ

С

OBJECTIVES: To impart knowledge on the following Topics

- To learn the basics of control system simulation.
- To do symbolic calculation.
- To study the principles of sliding mode control and the way of apply smc for buck converter.
- To learn the concept of power factor correction.
- To design simulate smc for buck converter and power factor correction circuit with controller

PRE-REQUISITE:

Course Code: 20EE502 Course Name: Power Electronics

UNIT - I SIMULATION BASICS IN CONTROL SYSTEMS

Transfer Function - How to build transfer function, identify Poles, zeros, draw time response plots, bode plot (Bode Plots for Multiplication Factors, Constant, Single and Double Integration Functions, Single and Double Differentiation Functions, Single Pole and Single Zero Functions, RHP Pole and RHP Zero Functions), state space modeling - transfer function from state space Model

UNIT - II SYMBOLIC CALCULATIONS

Symbolic Variables - Symbolic Vector Variables, Commands for Handling Polynomial Expressions - Extracting Parts of a Polynomial -. Factorization and Roots of Polynomials, Symbolic Matrix Algebra - Operations with Symbolic Matrices – Other Symbolic Matrix Operations.

UNIT - III SLIDING MODE CONTROL BASICS

Introduction - Introduction to Sliding - Mode Control - Basics of Sliding - Mode Theory-Application of Sliding - Mode Control to DC-DC Converters – Principle - Sliding mode control of buck converter.

UNIT - IV POWER FACTOR CORRECTION CIRCUITS

Introduction, Operating Principle of Single-Phase PFCs, Control of boost converter based PFCs, Designing the Inner Average-Current-Control Loop, Designing the Outer Voltage-Control Loop, Example of Single-Phase PFC Systems.

UNIT - V CONTROLLER DESIGN FOR PFC CIRCUITS

Power factor correction circuit using other SMPS topologies: Cuk and SEPIC converter - PFC circuits employing bridgeless topologies.

TOTAL: 45 PERIODS

9

TEXT BOOKS:

- 1. Marian K.Kazimierczuk and Agasthya Ayachit, "Laboratory Manual for Pulse-Width Modulated DC-DC Power Converters", Wiley2016, 1stEdition.
- 2. Rashid M.H, "Power Electronics Circuits, Devices and Applications", Prentice Hall India, Third Edition, New Delhi, 2014 Pearson 4thedition.
- 3. Rashid.M.H "Power electronics Handbook", Academic press, 2ndEdition, 4thEdition,

9

9

9

2017

- 4. Feedback Control problems using MATLAB and the Control system toolbox By Dean Frederick and Joe Chow, 2000, 1stEdition, Cengage Learning.
- 5. Ned Mohan," Power Electronics: A First Course", Johnwiley, 2013, 1stEdition.

REFERENCES:

- Sliding mode control for Switching Power Converters:, Techniques and Implementation, Slew-Chong Tan, Yuk Ming Lai Chi-Kong Tse, 1stEdition, CRC Press.
- 2. Andre Kislovski, "Dynamic Analysis of Switching-Mode DC/DC Converters", Springer 1991.
- 3. MATLAB Symbolic Algebra and Calculus Tools, Lopez Cesar, Apress, 2014.

OUTCOMES:

Course Nar	ne : CC	NTRO	l of p	OWER	ELEC	roni	CS CIR	CUITS			Course	Code :2	0EEV82	
CO				Co	ourse O	utcom	es				Unit	K –CO	POs	PSOs
C4V82.1	Calcu	late tra	ansfer	functior	n for co	onstant	, differe	ential, i	ntegra	l, First	1	K3	1,2,3,9	1
	order	and Se	econd (order fa	actors.				-					
C4V82.2	Illustra	Illustrate the effect of poles and zero's in the 's' plane.											1,2,3,9	1
C4V82.3	Select Symbolic equations for solving problems related											K3	1,2,3,9	1
	with N	/latrice	s, Poly	nomial										
C4V82.4	comp	ute the	contro	l expre	ession f	for DC-	-DC bi	ick cor	verter	using	4	K3	1,2,3,9	1
	sliding	g mode	contro	l theor	У									
C4V82.5	Deter	mine t	he con	troller	expres	sion fo	or powe	er facto	or corre	ection	4	K3	1,2,3,9	1
	circuit	ts.												
C4V82.6	Simul	ate sli	ding n	node c	control	of bu	ck con	verter	and p	ower	5	K3	1,2,3,9	1
	factor	correc	tion cir	cuit.										
			-	-	-	CO-	PO Maj	oping	-					-
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C4V82.1	3	2	1	-	-	-	-	-	1	-	-	-	1	-
C4V82.2	3	2	1	-	-	-	-	-	1	-	-	-	1	-
C4V82.3	3	2	1	-	-	-	-	-	1	-	-	-	1	-
C4V82.4	3	2	1	-	-	-	-	-	1	-	-	-	1	-
C4V82.5	3	2	1	-	-	-	-	-	1	-	-	-	1	-
C4V82.6	3	2	1	-	-	-	-	-	1	-	-	-	1	-

20EEV83 DESIGN OF ELECTRICAL APPARATUS (20EE6A2) L T P C 3 0 0 3

OBJECTIVES:

- Magnetic circuit parameters and thermal rating of various types of electrical machines.
- Armature and field systems for D.C. machines.
- Core, yoke, windings and cooling systems of transformers.
- Design of stator and rotor of induction machines.
- Design of stator and rotor of synchronous machines.

PRE-REQUISITE:

Course Code: 20EE201, 20EE304, 20EE401. Course Name: Electric Circuit Analysis, Electrical Machines-I, Electrical Machines-II.

UNIT-I DESIGN OF FIELD SYSTEM AND ARMATURE

Major considerations in Electrical Machine Design – Design factors-Limitations in Design-Electrical Engineering materials –Design of Magnetic circuits – Magnetizing current – Flux leakage – Leakage in Armature. Design of lap winding and wave winding.

UNIT-II DESIGN OF TRANSFORMERS

Construction - KVA output for single and three phase transformers – Overall dimensions design of yoke, core and winding for core and shell type transformers – Estimation of No load current – Temperature rise in Transformers – Design of Tank and cooling tubes of Transformers. Computer program: Complete Design of single phase core type transformer.

UNIT-III DESIGN OF DC MACHINES

Construction - Output Equations – Main Dimensions – Choice of specific loadings –Selection of number of poles – Design of Armature – Design of commutator and brushes design of field - Computer program: Design of Armature main dimensions.

UNIT- IV DESIGN OF INDUCTION MOTORS

Construction - Output equation of Induction motor – Main dimensions – choice of specific loadings – Design of squirrel cage rotor and wound rotor –Magnetic leakage calculations –Operating characteristics : Magnetizing current - Short circuit current – Circle diagram -Computer program: Design of slip-ring rotor

UNIT- V DESIGN OF SYNCHRONOUS MACHINES

Output equation – choice of specific loadings – Design of salient pole machines – Shortcircuit ratio – Armature design – Estimation of air gap length – Design of rotor –Design of damper winding – Determination of full load field MMF – Design of turbo alternators -Computer program: Design of Stator main dimensions.

TOTAL: 45 PERIODS

9

9

9

9

TEXT BOOKS:

- 1. Sawhney, A.K., 'A Course in Electrical Machine Design', Dhanpat Rai & Sons, New Delhi, Fifth Edition, 2016.
- 2. M V Deshpande 'Design and Testing of Electrical Machines' PHI learning Pvt Lt, 2011.
- 3. Sen, S.K., 'Principles of Electrical Machine Designs with Computer Programmes', Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, Second Edition, 2009.

REFERENCES:

- 1. A.Shanmugasundaram, G.Gangadharan, R.Palani 'Electrical Machine Design Data Book', New Age International Pvt. Ltd., Reprint 2007.
- 2. Balbir Singh, 'Electrical Machine Design', Vikas Publishing House Private Limited, 1981.
- 3. V Rajini, V.S Nagarajan, 'Electrical Machine Design', Pearson, 2017.
- 4. K.M.Vishnumurthy, 'Computer aided design of electrical machines', B SPublications, 2008.

OUTCOMES:

Course Nar	ne : DE	SIGN (OF ELE		AL AP	PARA	rus				Course	Code :2	0EEV83	
CO				Co	ourse O)utcom	es				Unit	K –CO	POs	PSOs
C4V83.1	Explai	in the d	lesign c	conside	rations	for rota	iting an	d static	electric	cal		K3	1,2,3	2
	machi	ines.												
C4V83.2	Desig	n lap ai	nd wav	e windii	ng for D	C mac	hines.					K3	1,2,3	2
C4V83.3	Analyze the design parameters of single and three phase											K4	1,2,3,4	2
	transformer.													
C4V83.4	Design armature and field of DC machines.											K3	1,2,3	2
C4V83.5	Desig	n stato	r and ro	otor of in	nductio	n motor	ſ.				IV	K3	1,2,3	2
C4V83.6	Desig	n stato	r and ro	otor of s	ynchro	nous m	achine	s.			V	K3	1,2,3	2
						CO-	PO Ma	pping						
CO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C4V83.1	3	2	1	-	-	-	-	-	-	-	-	-	-	2
C4V83.2	3	2	1	-	-	-	-	-	-	-	-	-	-	2
C4V83.3	3	3	2	1	-	-	-	-	-	-	-	-	-	2
C4V83.4	3	2	1	-	-	-	-	-	-	-	-	-	-	2
C4V83.5	3	3	1	-	-	-	-	-	-	-	-	-	-	2
C4V83.6	3	2	1	-	-	-	-	-	-	-	-	-	-	2

20EEV84	MEMS AND NEMS	L	т	Р	С
		2	0	2	3

OBJECTIVES:

- To introduce the diverse technological and functional approaches of MEMS/NEMS and applications.
- To understand the microstructures and fabrication methods.
- To provide an insight of micro and nano sensors, actuators.
- To emphasis the need for NEMS technology.
- To update the ongoing trends and real time applications of MEMS and NEMS technology.

PRE-REQUISITE: NII

UNIT - I INTRODUCTION TO MEMS and NEMS

Overview of Micro electro mechanical systems and Nano Electro mechanical systems, devices and technologies, Laws of scaling - Materials for MEMS and NEMS - Applications of MEMS and NEMS.

UNIT - II MICRO-MACHINING AND MICRO FABRICATION TECHNIQUES 6

Photolithography – Micro manufacturing, Bulk micro machining, surface micro machining, LIGA.

UNIT - III MICRO SENSORS AND MICRO ACTUATORS

Micro machining: Capacitive Sensors - Piezoresistive Sensors - Piezoelectric actuators.

UNIT - IV NEMS TECHNOLOGY

Atomic scale precision engineering – Nano Fabrication techniques –NEMS for sensors and actuators.

UNIT - V MEMS and NEMS APPLICATION

Bio MEMS – Optical NEMS – Micro motors – Smart Sensors – Recent trends in MEMS and NEMS.

30 PERIODS

LAB COMPONENTS:

- 1. Laboratory experiment: Simulation of MEMS sensors and actuators using Multi physics tool
 - a) Simulation of a typical piezoresistive sensor
 - b) Simulation of a typical Piezoelectric actuator
 - c) Simulation study of a biosensor
 - d) Simulation study of a micro motor
- 2. Assignment: Role of MEMS and NEMS devices for Industry Standard 5.0.
- Mini project: Design and analysis of any MEMS/NEMS device using multi physics tool.

30 PERIODS

6 15

6

6

TOTAL: 30+30 = 60 PERIODS

TEXT BOOKS:

- 1. Chang Liu, "Foundations of MEMS", Pearson International Edition, 2011, 2nd Edition.
- Tai-.Ran Hsu, "MEMS and Microsystems: design, manufacture, and Nanoscale" -2nd Edition, John Wiley & Sons, Inc., Hoboken, New Jersey, 2008.
- 3. Lyshevski, S.E. "Nano- and Micro-Electromechanical Systems: Fundamentals of Nano- and Micro engineering" (2nded.). CRC Press, 2005.
- 4. Julian W Gardner and Vijay K Varadan, "Micro sensors, MEMS and Smart Devices", John Wiley and Sons Ltd, 2001, 1st Edition.

REFERENCES:

- Marc F madou "Fundamentals of micro fabrication" CRC Press 2002 2nd Edition Marc Madou.
- M.H.Bao "Micro mechanical transducers: Pressure sensors, accelerometers and gyroscopes", Elsevier, Newyork, 16 Oct 2000,1stEdition.
- Maluf, Nadim "An introduction to Micro Electro-mechanical Systems Engineering" AR Tech house, Boston, June 30 2004, 2nd Edition.
- 4. Mohamed Gad– el –Hak "MEMS Handbook" Edited CRC Press 2001,1st Edition.

LIST OF OPEN SOURCE SOFTWARE / LEARNING WEBSITE:

- 1. https://www.academia.edu/Lectures_on_MEMS_and_MICROSYSTEMS_DESIGN_A ND_MANUFACTURE
- 2. https://nptel.ac.in/courses
- 3. https://www.iitk.ac.in/me/mems-fabrication
- 4. http://mems.iiti.ac.in/
- 5. https://onlinecourses.nptel.ac.in/noc22_ee36/preview

OUTCOMES:

Course Na	me : M	EMS A	ND NE	MS							Cour	se Code	e : 20EEV84	4
CO				С	ourse	Outco	mes				Unit	K –CO	POs	PSOs
C4V84.1	Expla MEM	in the r S and I	nateria ∖EMS t	l prope for indu	erties a ustrial a	nd the automa	signific tion.	ance o	f		1	K2	1,2	1,2
C4V84.2	Discu techn	ss the iques	proc	cess o	f micro	omachi	ining a	ind mi	cro fat	orication	2	K2	1,2	1,2
C4V84.3	Sumn actua senso	narize tors. C or and F	the fa conduct Piezoel	abrication t an ex ectric a	on me xperim actuato	sor and resistive	3	K3	1,2,3,5,6, 8,9,10	1,2				
C4V84.4	Expla and p	in the rocess	fabrica the se	ation te nsors a	echniqu and act	ies of uators	NEMS	to mo	odels, s	simulate	4	K2	1,2	1,2
C4V84.5	Infer t to kno	he imp wledg	roved I e upgra	Employ adation	ability on ME	and en MS an	treprer d NEN	leurshi IS tech	o capa nology	city due	5	K2	1,2	1,2
C4V84.6	Descr Cond and m	ribe the uct an nicro m	e opera experir otor	tion of nent to	biosen Simul	sor, mi ate the	cro mo perfor	tor and mance	l smart of a bi	sensor. osensor	5	К3	1,2,3,5,6, 8,9,10	1,2
						CO	-PO Ma	apping						
CO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C4V84.1	2	1	-	-	-	-	-	-	-	-	-	-	2	2
C4V84.2	3	2	1	I	2	2	-	2	2	1	-	-	2	2
C4V84.3	2	1	-	-	-	-	-	-	-	-	-	-	2	2
C4V84.4	2	1	-	-	-	-	-	-	-	-	-	-	3	3
C4V84.5	2	1	-	-	-	-	-	-	-	-	-	-	3	3
C4V84.6	3	2	1	-	2	2	-	2	2	1	-	-	2	2

20EEV85	MODEL BASED CONTROL	L	Т	Ρ	С
		3	0	0	3

OBJECTIVES:

- To introduce the Knowledge about Multivariable and Multi loop systems.
- To understand the Model predictive control schemes and its elements.
- Get exposed to state space MPC along with case studies.
- To acquire knowledge on various constrained MPC.
- To make the student understand the principles of STR, MRAC and Gain scheduling.
- To make the student design simple adaptive controllers for linear systems

PRE-REQUISITE: NIL

UNIT - I INTRODUCTION TO MIMO CONTROL 9 Introduction to MIMO Systema Multivariable control Multivariable MC

Introduction to MIMO Systems – Multivariable control – Multiloop Control – Multivariablel MC-IMC PID – Case studies

UNIT - II MODEL PREDICTIVE CONTROL SCHEMES 9

Introduction to Model Predictive Control - Model Predictive Control Elements – Generalized Predictive Control Scheme – Multivariable Generalized Predictive Control Scheme – Multiple Model based Model Predictive Control Scheme Case Studies

UNIT - III STATE SPACE BASED MODEL PREDICTIVE CONTROL SCHEME 9

State Space Model Based Predictive Control Scheme - Review of Kalman Update based filters –State Observer Based Model Predictive Control Schemes – Case Studies

UNIT - IV CONSTRAINED MODEL PREDICTIVE CONTROL SCHEME 9

Constraints Handling: Amplitude Constraints and Rate Constraints – Constraints and Optimization – Constrained Model Predictive Control Scheme – Case Studies.

UNIT - V ADAPTIVECONTROLSCHEME 9

Introduction to Adaptive Control - Gain Scheduling - Self tuning regulators – MARS - Adaptive Mode Predictive Control Scheme – Case Studies.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Coleman Brosilow, Babu Joseph, "Techniques of Model-Based Control", Prentice Hall PTR Pub 2002, 1stEdition.
- 2. E.F.Camacho, C.Bordons, "Model Predictive Control", Springer-Verlag London Limited 2007, 2nd Edition.

REFERENCES:

- Paul Serban Agachi, Zoltan K. Nagy, Mircea Vasile Cristea, and Arpad Imre-Lucaci Model Based Control Case Studies in Process Engineering, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2007. 1stEdition.
- 2. Ridong Zhang, Anke Xue Furong Gao, "Model Predictive Control Approaches Based on the Extended State Space Model and Extended Non-minimal State Space Model",

Springer Nature Singapore Pte Ltd. 2019, 1stEdition.

3. J.A. ROSSITER "Model-Based Predictive Control A Practical Approach" Taylor & Francis e-Library, 2005, 1stedition.

OUTCOMES:

Course Na	me : Mo	ODEL E	BASED	CONT	ROL						Cour	se Code	e : 20EEV85	5
CO				C	ourse	Outco	nes				Unit	K –CO	POs	PSOs
C4V85.1	Ability	/ to ap	ply en	gineeri	ng kno	owledge	e to ui	ndersta	ind the	contro	1	K2	1,2,3,4,	1,2
	schen	nes on	MIMO	systen	ns	-								
C4V85.2	Ability	Ability to design controller for MIMO system										K3	1,2,3,4	1,2
C4V85.3	Ability	Ability to analyze the control schemes available in industries										K3	1,2,3,4	1,2
C4V85.4	Ability	to des	sign MF	PC, Ad	aptive	control	lers for	^r practio	cal eng	ineering	4	K3	1,2,3,4	1,2
	proble	ems	-							-				
C4V85.5	Ability	to cho	ose su	itable (control	ers for	the giv	en pro	blems		5	K2	1,2,3,4	1,2
C4V85.6	Ability	to a	oply ca	ase sti	udies	on adv	anced	contro	oller fo	r future	5	K2	1,2,3,4	1,2
	imple	mentat	ion.											
						CO	-PO Ma	apping						
CO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C4V85.1	3	2	2	2	1	-	-	-	1	-	1	-	2	1
C4V85.2	3	3	3	3	1	-	-	-	1	-	1	-	2	1
C4V85.3	3	3	3	2	1	-	-	-	1	-	1	-	2	1
C4V85.4	3	3	3	3	1	-	-	-	1	-	1	-	2	1
C4V85.5	2	3	3	3	1	-	-	-	1	-	1	-	2	1
C4V85.6	2	3	3	3	1	-	-	-	1	-	1	-	2	1

20EEV86	PROBABILITY AND STATISTICS	L	Т	Ρ	С
		3	0	0	3

OBJECTIVES:

- This course aims at providing the required skill to apply the statistical tools in engineering problems.
- To introduce the basic concepts of probability and random variables of one and two dimensions
- To acquaint the knowledge of testing of hypothesis for small and large samples and to introduce the basic concepts of classifications of design of experiments which plays very important roles in the field of agriculture and statistical quality control.

PRE-REQUISITE: Nil

UNIT - I PROBABILITY AND RANDOM VARIABLES

Probability–Discrete and continuous random variables – Moments – Moment generating functions – Binomial, Poisson, Uniform, Exponential and Normal distributions.

UNIT - II TWO-DIMENSIONAL RANDOM VARIABLES

Joint distributions – Marginal and conditional distributions – Covariance – Correlation and linear regression – Transformation of random variables – Central limit theorem (for independent and identically distributed random variables).

UNIT - III TESTING OF HYPOTHESIS

Sampling distributions - Estimation of parameters - Statistical hypothesis - Large sample tests based on Normal distribution for single mean and difference of means-Tests based on t, Chi-square and F distributions for mean, variance and proportion-Contingency table (test for independent) - Goodness of fit

UNIT - IV DESIGN OF EXPERIMENTS

One way and Two way classifications – Completely randomized design – Randomized block design – Latin square design - 2^2 factorial design.

UNIT - V STATISTICAL QUALITY CONTROL

Control charts for measurements (X and R charts) – Control charts for attributes (p,c and np charts) –Tolerance limits - Acceptance sampling

TOTAL: 45 PERIODS

q

9

9

9

9

TEXT BOOKS:

- 1. Johnson. R.A., Miller, I and Freund J., "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 8th Edition, 2015
- 2. Veerarajan.T., "Probability, Statistics and Random Processes", Tata McGraw Hill, New Delhi , 2006.

REFERENCES:

- 1. Papoulis.A. and Unnikrishnapillai.S., "Probability, Random Variables and Stochastic Processes", McGraw Hill Education India, New Delhi, 4th Edition, 2002.
- 2. Spiegel.M.R., Schiller.J and Srinivasan.R.A., "Schaum's Outline of Theory and Problems of Probability and Statistics", Tata McGraw Hill, 3rd Edition, 2004.
- 3. Walpole.R.E., Myers.R.H., Myers.S.L. and Ye.K., "Probability and Statistics for Engineers and Scientists", Pearson Education, Asia, 8th Edition, 2011.
- 4. Gupta.S.C., Kapoor.V.K,, "Fundamental of Mathematical Statistics", Sultan chand & Sons Educational Publishers, New Delhi, Reprint 2013.
- 5. Kandasamy.P., Thilagvathi.K., Gunavathi.K., "Probability Random Variables & Random Processes", S.Chand & Co.Ltd., Reprint 2008.

OUTCOMES:

Course Na	me :PR	OBAB	ILITY A	ND ST	ATISTI	CS					Course	Code : 2	0EEV86	
CO				Co	ourse C	utcom	es				Unit	K –CO	POs	PSOs
C4V86.1	Build	the pa	ramete	rs of sta	atistical	distribu	utions u	sing ba	isic		1	K3	1,2,3,8,9	-
	proba	ability th	neory co	oncepts	5.									
C4V86.2	Calc	ulate th	e statis	stical m	easures	s for two	o dimer	nsional	random	ı	2	K3	1,2,3,8,9	-
	variables.													
C4V86.3	Apply the concepts of testing of hypothesis for large samples.									3	K3	1,2,3,8,9	-	
C4V86.4	Appl	y t-test,	chi-sq	uare ar	nd F- Te	est for s	mall sa	mples.			3	K3	1,2,3,8,9	-
C4V86.5	Appl	y the ba	asic coi	ncepts	of desig	gn of ex	perime	nts in tl	he field	of	4	K3	1,2,3,8,9	-
	agric	ulture.												
C4V86.6	Use	control	charts	for qua	lity con	trol pro	blems.				5	K3	1,2,3,8,9	-
						CO	-PO Ma	apping						
CO	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C4V86.1	3	2	1	-	-	-	-	1	1	-	-	-	-	-
C4V86.2	3	2	1	-	-	-	-	1	1	-	-	-	-	-
C4V86.3	3	2	1	-	-	-	-	1	1	-	-	-	-	-
C4V86.4	3	2	1	-	-	-	-	1	1	-	-	-	-	-
C4V86.5	3	2	1	-	-	-	-	1	1	-	-	-	-	-
C4V86.6	3	2	1	-	-	-	-	1	1	-	-	-	-	-

VERTICAL 1: FINTECH AND BLOCK CHAIN

FINANCIAL MANAGEMENT L т Ρ С 20MGV11 3 0 0 3 **OBJECTIVES:** • To acquire the knowledge of the decision areas in finance. To learn the various sources of Finance To describe about capital budgeting and cost of capital. • To discuss on how to construct a robust capital structure and dividend policy • To develop an understanding of tools on Working Capital Management **PRE-REQUISITE: NIL** THE INVESTMENT ENVIRONMENT UNIT - I 9 Definition and Scope of Finance Functions - Objectives of Financial Management - Profit Maximization and Wealth Maximization- Time Value of money- Risk and return concepts. UNIT – II SOURCES OF FINANCE 9 Long term sources of Finance -Equity Shares - Debentures - Preferred Stock - Features -Merits and Demerits. Short term sources - Bank Sources, Trade Credit, Overdrafts, Commercial Papers, Certificate of Deposits, Money market mutual funds etc 9 UNIT – III INVESTMENT DECISIONS Investment Decisions: capital budgeting - Need and Importance - Techniques of Capital Budgeting- Payback -ARR - NPV - IRR - Profitability Index. Cost of Capital - Cost of Specific Sources of Capital - Equity -Preferred Stock- Debt -Reserves -Concept and measurement of cost of capital - Weighted Average Cost of Capital. UNIT – IV FINANCING AND DIVIDEND DECISION 9 Operating Leverage and Financial Leverage- EBIT-EPS analysis. Capital Structure determinantsof Capital structure- Designing an Optimum capital structure . Dividend policy - Aspects of dividend policy - practical consideration - forms of dividend policy -Determinants of Dividend Policy UNIT - V WORKING CAPITAL DECISION 9 Working Capital Management: Working Capital Management - concepts - importance -

Working Capital Management: Working Capital Management - concepts - importance - Determinants of Working capital. Cash Management: Motives for holding cash – Objectives and Strategies of CashManagement. Receivables Management: Objectives - Credit policies.

TOTAL: 45 PERIODS

TEXT BOOKS:

1.M.Y. Khan and P.K.Jain Financial management, Text, Tata McGraw Hill

2. M. Pandey Financial Management, Vikas Publishing House Pvt. Ltd

REFERENCES:

1. James C. Vanhorne – Fundamentals of Financial Management– PHI Learning

2. Prasanna Chandra, Financial Management

3. Srivatsava, Financial Management, Oxford University Press, 2011

L

т

Ρ

0

С

3

20MGV21 FUNDAMENTALS OF INVESTMENT 3 0 **OBJECTIVES:**

Describe the investment environment in which investment decisions are taken.

- Explain how to Value bonds and equities
- Explain the various approaches to value securities
- Describe how to create efficient portfolios through diversification
- Discuss the mechanism of investor protection in India.

PRE-REQUISITE: NIL

UNIT - I THE INVESTMENT ENVIRONMENT

The investment decision process, Types of Investments - Commodities, Real Estate and Financial Assets, the Indian securities market, the market participants and trading of securities, security market indices, sources of financial information, Concept of return and risk, Impact of Taxes and Inflation on return

UNIT – II FIXED INCOME SECURITIES

Bond features, types of bonds, estimating bond yields, Bond Valuation types of bond risks, default riskand credit rating.

UNIT – III **APPROACHES TOEQUITYANALYSIS**

Introduction to Fundamental Analysis, Technical Analysis and Efficient Market Hypothesis, dividend capitalisation models, and price-earnings multiple approach to equity valuation

PORTFOLIO ANALYSIS AND FINANCIAL DERIVATIVES UNIT – IV

Portfolio and Diversification, Portfolio Risk and Return; Mutual Funds; Introduction to Financial Derivatives: Financial Derivatives Markets in India

UNIT - V INVESTOR PROTECTION

Role of SEBI and stock exchanges in investor protection; Investor grievances and their redressal system, insider trading, investors' awareness and activism

REFERENCES:

- 1. Charles P. Jones, Gerald R. Jensen. Investments: analysis and management. Wiley, 14THEdition. 2019.
- Chandra, Prasanna, Investment analysis and portfolio management, McGraw-hill education,5th, Edition, 2017.
- 3. Rustagi, R. P. Investment Management Theory and Practice. Sultan Chand & Sons, 2021.
- 4. ZviBodie, Alex Kane, Alan J Marcus, PitabusMohanty, Investments, McGraw Hill Education(India), 11 Edition(SIE), 2019

9

9

9

TOTAL: 45 PERIODS

9

т

0

Ρ

0

С

3

9

9

9

20MGV31

BANKING, FINANCIAL SERVICES AND L INSURANCE 3

OBJECTIVES:

- Understand the Banking system in India
- Grasp how banks raise their sources and how they deploy it
- Understand the development in banking technology
- Understand the financial services in India
- Understand the insurance Industry in India

PRE-REQUISITE: NIL

UNIT - I INTRODUCTION TO INDIAN BANKING SYSTEM

Overview of Banking system – Structure – Functions –Banking system in India - Key Regulations inIndian Banking sector –RBI. Relationship between Banker and Customer - Retail & Wholesale Banking – types of Accounts - Opening and operation of Accounts.

UNIT – II MANAGING BANK FUNDS/ PRODUCTS

Liquid Assets - Investment in securities - Advances - Loans.Negotiable Instruments – Cheques, Bills of Exchange & Promissory Notes.Designing deposit schemes– Asset and Liability Management – NPA's – Current issues on NPA's – M&A's of banks into securities market

UNIT – III DEVELOPMENT IN BANKING TECHNOLOGY

Payment system in India – paper based – e payment –electronic banking –plastic money – emoney –forecasting of cash demand at ATM's –The Information Technology Act, 2000 in India – RBI's Financial Sector Technology vision document – security threats in e-banking & RBI's Initiative.

UNIT – IV FINANCIAL SERVICES

Introduction – Need for Financial Services – Financial Services Market in India – NBFC – Leasing and Hire Purchase — mutual funds. Venture Capital Financing –Bill discounting – factoring – Merchant Banking

UNIT - V INSURANCE

Insurance –Concept - Need - History of Insurance industry in India. Insurance Act, 1938 –IRDA – Regulations – Life Insurance - Annuities and Unit Linked Policies - Lapse of the Policy – revival – settlement of claim

REFERENCES:

- 1. Padmalatha Suresh and Justin Paul, "Management of Banking and Financial Services, Pearson, Delhi, 2017.
- 2. Meera Sharma, "Management of Financial Institutions with emphasis on Bank and RiskManagement", PHI Learning Pvt. Ltd., New Delhi 2010
- 3. Peter S. Rose and Sylvia C. and Hudgins, "Bank Management and Financial Services", TataMcGraw Hill, New Delhi, 2017

143

TOTAL: 45 PERIODS

9

20MGV41

L INTRODUCTION TO BLOCKCHAIN AND ITS 3 APPLICATIONS

т Ρ С 0 0 3

OBJECTIVES:

- To understand the basics of Blockchain
- To learn Different protocols and consensus algorithms in Blockchain
- To learn the fundamentals of Bitcoins and smart contracts •
- To experiment the Hyperledger Fabric, Ethereum networks
- To understand the Blockchain Applications and trends

UNIT I INTRODUCTION TO BLOCKCHAIN

Blockchain: The growth of blockchain technology - Distributed systems - The history of blockchain and Bitcoin - Features of a blockchain - Types of blockchain, Consensus: Consensus mechanism - Types of consensus mechanisms - Consensus in blockchain. Decentralization: Decentralization using blockchain - Methods of decentralization - Routes to decentralization-Blockchain and full ecosystem decentralization - Smart contracts - Decentralized Organizations-Platforms for decentralization.

UNIT II INTRODUCTION TO CRYPTOCURRENCY

9 Bitcoin – Digital Keys and Addresses – Transactions – Mining – Bitcoin Networks and Payments - Wallets - Alternative Coins - Theoretical Limitations - Bitcoin limitations - Name coin - Prime coin - Zcash - Smart Contracts - Ricardian Contracts - Deploying smart contracts on a blockchain

UNIT III ETHEREUM

Introduction - The Ethereum network - Components of the Ethereum ecosystem - Transactions and messages - Ether cryptocurrency / tokens (ETC and ETH) - The Ethereum Virtual Machine (EVM), Ethereum Development Environment: Test networks - Setting up a private net - Starting up the private network

UNIT IV WEB3 AND HYPERLEDGE

Introduction to Web3 – Contract Deployment – POST Requests – Development Frameworks – Hyperledger as a Protocol – The Reference Architecture – Hyperledger Fabric – Distributed Ledger- Corda.

UNIT V **EMERGING TRENDS**

Kadena – Ripple – Rootstock – Quorum – Tendermint – Scalability – Privacy – Other Challenges – Blockchain Research – Notable Projects – Miscellaneous Tools.

REFERENCES:

- 1. Imran. Bashir. Mastering block chain: Distributed Ledger Technology, Decentralization, andSmart Contracts Explained. Packt Publishing, 2nd Edition, 2018
- 2. Peter Borovykh, Blockchain Application in Finance, Blockchain Driven, 2nd Edition, 2018
- 3. ArshdeepBahga, Vijay Madisetti, "Blockchain Applications: A Hands On Approach", VPT,2017.

9

9

9

9

TOTAL: 45 PERIODS
20MGV51 FINTECH PERSONAL FINANCE AND PAYMENTS 3 0 0 3

OBJECTIVES:

- To understand currency exchange and digital payments.
- To acquire the knowledge of Fintech firm and their role in Market
- To learn about InsurTech model and services
- To acquire knowledge about Fintech regulations and startups
- To understand P2P lending, challenges and solutions

UNIT I CURRENCY EXCHANGE AND PAYMENT

Understand the concept of Crypto currency- Bitcoin and Applications -Cryptocurrencies and Digital Crypto Wallets -Types of Cryptocurrencies - Cryptocurrencies and Applications, block chain, Artificial Intelligence, machine learning. Fintech users, Individual Payments, RTGS Systems, Immediate Page 54 of 90 Payment Service (IMPS), Unified Payments Interface (UPI).Legal and Regulatory Implications of Crypto currencies, Payment systems and their regulations. Digital Payments Smart Cards, Stored-Value Cards, EC Micropayments, Payment Gateways, Mobile Payments, Digital and Virtual Currencies, Security, Ethical, Legal, Privacy, and Technology Issues

UNIT II DIGITAL FINANCE AND ALTERNATIVE FINANCE

A Brief History of Financial Innovation, Digitization of Financial Services, Crowd funding, Charity and Equity, Introduction to the concept of Initial Coin Offering

UNIT III INSURETECH

InsurTech Introduction , Business model disruption AI/ML in InsurTech - IoT and InsurTech ,Risk Modeling ,Fraud Detection Processing claims and Underwriting Innovations in Insurance Services

UNIT IV PEER TO PEER LENDING

P2P and Marketplace Lending, New Models and New Products in market place lending P2P Infrastructure and technologies, Concept of Crowdfunding Crowdfunding Architecture and Technology, P2P and Crowdfunding unicorns and business models, SME/MSME Lending: Uniqueopportunities and Challenges, Solutions and Innovations

UNIT V REGULATORY ISSUES

FinTech Regulations: Global Regulations and Domestic Regulations, Evolution of RegTech, RegTech Ecosystem: Financial Institutions, RegTech Ecosystem: StartupsRegTech, Startups: Challenges, RegTech Ecosystem: Regulators, Use of AI in regulation and Fraud detection

TOTAL: 45 PERIODS

. . .

9

9

9

9 P2

1. Swanson Seth, Fintech for Beginners: Understanding and Utilizing the power of technology, Createspace Independent Publishing Platform, 2016.

2. Models AuTanda, Fintech Bigtech And Banks Digitalization and Its Impact On BankingBusiness, Springer, 2019

3. Henning Diedrich, Ethereum: Blockchains, Digital Assets, Smart Contracts, DecentralizedAutonomous Organizations, Wildfire Publishing, 2016

4. Jacob William, FinTech: The Beginner's Guide to Financial Technology,

CreatespaceIndependent Publishing Platform, 2016

5.IIBF, Digital Banking, Taxmann Publication, 2016

6.Jacob William, Financial Technology, Create space Independent Pub, 2016

7. Luke Sutton, Financial Technology: Bitcoin & Blockchain, Createspace Independent Pub,2016

L

3

20MGV61

INTRODUCTION TO FINTECH

Ρ С т 0 0 3

OBJECTIVES:

To learn about history, importance and evolution of Fintech To acquire the knowledge of Fintech in payment industry To acquire the knowledge of Fintech in insurance industry To learn the Fintech developments around the world

To know about the future of Fintech

UNIT I INTRODUCTION

Fintech - Definition, History, concept, meaning, architecture, significance, Goals, key areas in Fintech, Importance of Fintech, role of Fintech in economic development, opportunities and challenges in Fintech, Evolution of Fintech in different sectors of the industry - Infrastructure, Banking Industry, Startups and Emerging Markets, recent developments in FinTech, future prospects and potential issues with Fintech.

UNIT II **PAYMENT INDUSTRY**

FinTech in Payment Industry-Multichannel digital wallets, applications supporting wallets, onboarding and KYC application, FinTech in Lending Industry- Formal lending, Informal lending, P2Plending, POS lending, Online lending, Payday lending, Microfinance, Crowdfunding.

INSURANCE INDUSTRY UNIT III

FinTech in Wealth Management Industry-Financial Advice, Automated investing, Socially responsible investing, Fractional Investing, Social Investing, FinTech in Insurance Industry- P2P insurance, On-Demand Insurance, On-Demand Consultation, Customer engagement through Quoteto sell, policy servicing, Claims Management, Investment linked health insurance.

UNIT IV FINTECH AROUND THE GLOBE

FinTech developments - US, Europe and UK, Germany, Sweden, France, China, India, Africa, Australia, New Zealand, Brazil and Middle East, Regulatory and Policy Assessment for Growth of FinTech. FinTech as disruptors, Financial institutions collaborating with FinTech companies, The new financial world.

FUTURE OF FINTECH UNIT V

How emerging technologies will change financial services, the future of financial services, banking on innovation through data, why FinTech banks will rule the world, The FinTech Supermarket, Bankspartnering with FinTech start-ups, The rise of BankTech, Fintech impact on Retail Banking, A future without money, Ethics in Fintech.

TOTAL: 45 PERIODS

9

9

9

9

- 1) Arner D., Barbers J., Buckley R, The evolution of FinTech: a new post crisis paradigm, University of New South Wales Research Series, 2015
- 2) Susanne Chishti, Janos Barberis, The FINTECH Book: The Financial Technology Handbookfor Investors, Entrepreneurs and Visionaries, Wiley Publications, 2016
- 3) Richard Hayen, FinTech: The Impact and Influence of Financial Technology on Banking and the Finance Industry, 2016
- 4) Parag Y Arjunwadkar, FinTech: The Technology Driving Disruption in the financial service industry CRC Press, 2018
- 5) Sanjay Phadke, Fintech Future : The Digital DNA of Finance Paperback .Sage Publications,2020
- 6) Pranay Gupta, T. Mandy Tham, Fintech: The New DNA of Financial Services Paperback,2018

VERTICAL 2: ENTREPRENEURSHIP

20MGV12 FOUNDATIONS OF ENTREPRENERUSHIP

OBJECTIVES:

To develop and strengthen the entrepreneurial quality and motivation of learners. To impart the entrepreneurial skills and traits essential to become successful entrepreneurs. To apply the principles and theories of entrepreneurship and management in Technology oriented business.

To empower the learners to run a Technology driven business efficiently and effectively

UNIT I INTRODUCTION TO ENTREPRENEURSHIP

Entrepreneurship- Definition, Need, Scope - Entrepreneurial Skill & Traits -Entrepreneur vs. Intrapreneur; Classification of entrepreneurs, Types of entrepreneurs - Factors affecting entrepreneurial development – Achievement Motivation – Contributions of Entreprenrship toEconomic Development

UNIT II BUSINESS OWNERSHIP & ENVRIONMENT

Types of Business Ownership – Buiness Envrionemental Factors – Political-Economic-Sociological-Technological-Environmental-Legal aspects – Human Reosurces Mobilisation-Basics of Managing Finance- Esentials of Marketing Management - Production and Operations Planning – Systems Management and Administration

UNIT III FUNDAMENTALS OF TECHNOPRENEURSHIP

Introduction to Technopreneurship - Definition, Need, Scope- Emerging Concepts- Principles - Characterisitcis of a technopreneur - Impacts of Technopreneurship on Society – Economy- Job Opportuinites in Technopreneurship - Recent trends

UNIT IV APPLICATIONS OF TECHNOPRENEURSHIP

Technology Entrepreneurship - Local, National and Global practices - Intrapreneurship and Technology interactions, Networking of entrepreneurial activities – Launching - Managing Technology based Product / Service entrepreneurship — Success Stories of Technopreneurs - CaseStudies

UNIT V EMERGING TRENDS IN ENTREPRENERUSHIP

Effective Business Management Strategies For Franchising - Sub-Contracting- Leasing-Technopreneurs – Agripreneurs - Netpreneurs- Portfolio entrepreneruship - NGO Entrepreneurship

TEXT BOOKS:

- 1 S.S.Khanka, "Entrepreneurial Development" S.Chand & Co. Ltd. Ram Nagar New Delhi, 2021.
- 2 Donal F Kuratko Entrepreneurship (11th Edition) Theory, Process, Practice by Published 2019 by Cengage Learning

TOTAL: 45 PERIODS

9

9

9

9

- 1 Daniel Mankani. 2003. Technopreneurship: The successful Entrepreneur in the new Economy. Prentice Hall
- 2 Edward Elgar. 2007. Entrepreneurship, Cooperation and the Firm: The Emergence and Survival of High-Technology Ventures in Europe. Edi: Jan Ulijn, Dominique Drillon, and Frank Lasch. Wiley
- 3 Lang, J. 2002, The High Tech Entrepreneur's Handbook, Ft.com.
- 4 David Sheff 2002, China Dawn: The Story of a Technology and Business Revolution,
- 5 Harper Business <u>https://fanny.staff.uns.ac.id/files/2013/12/Technopreneur-BASED-EDUCATION-REVOLUTION.pdf</u>
- 6 JumpStart: A Technoprenuership Fable, Dennis Posadas, (Singapore: Pearson Prentice Hall,2009
- 7 Basics of Technoprenuership: Module 1.1-1.2, Frederico Gonzales, President-PESO Inc; M.Barcelon, UP
- 8 Journal articles pertaining to Entrepreneurship

20MGV22TEAM BUILDING & LEADERSHIPLTPCMANAGEMENT FOR BUSINESS3003

OBJECTIVES:

To develop and strengthen the Leadership qualities and motivation of learners.

To impart the Leadership skills and traits essential to become successful entrepreneurs. To apply the principles and theories of Team Building in managing Technology oriented business.

To empower the learners to build robust teams for running and leading a business efficientlyand effectively

UNIT I INTRODUCTION TO MANAGING TEAMS

Introduction to Team - Team Dynamics - Team Formation – Stages of Team Devlopment - Enhancing teamwork within a group - Team Coaching - Team Decision Making - Virtual Teams - SelfDirected Work Teams (SDWTs) -Multicultural Teams.

UNIT II MANAGING AND DEVELOPING EFFECTIVE TEAMS

Team-based Organisations- Leadershp roles in team-based organisations - Offsite training and team development - Experiential Learning - Coaching and Mentoring in team building - Building High-Performance Teams - Building Credibility and Trust - Skills for Developing Others - Team Building at the Top - Leadership in Teamwork Effectiveness.

UNIT III INTRODUCTION TO LEADERSHIP

Introduction to Leadership - Leadership Myths – Characteristics of Leader, Follower and Situation - Leadership Attributes - Personality Traits and Leadership- Intelligence Types and Leadership - Power and Leadership - Delegation and Empowerment.

UNIT IV LEADERSHIP IN ORGANISATIONS

Leadership Styles – LMX Theory- Leadership Theory and Normative Decision Model -Situational Leadership Model - Contingency Model and Path Goal Theory – Transactional and Transformational Leadership - Charismatic Leadership - Role of Ethics and Values in

UNIT V LEADERSHIP EFFECTIVENESS

Leadership Behaviour - Assessment of Leadership Behaviors - Destructive Leadership - Motivation and Leadership - Managerial Incompetence and Derailment Conflict Management - Negotiation and Leadership - Culture and Leadership - Global Leadership - Recent Trends in

TOTAL: 45 PERIODS

REFERENCES:

- 1. Hughes, R.L., Ginnett, R.C., & Curphy, G.J., Leadership: Enhancing the lessons of experience ,9th Ed, McGraw Hill Education, Chennai, India. (2019).
- 2. Katzenback, J.R., Smith, D.K., The Wisdom of Teams: Creating the HighPerformance Organisations, Harvard Business Review Press, (2015).
- 3. Haldar, U.K., Leadership and Team Building, Oxford University Press, (2010).
- 4. Daft, R.L., The Leadership Experience, Cengage, (2015).
- 5. Daniel Levi, Group Dynamics for Teams ,4th Ed, (2014), Sage Publications.
- 6. Dyer, W. G., Dyer, W. G., Jr., & Dyer, J. H. Team building: Proven strategies for improvingteam performance, 5thed, Jossey-Bass, (2013).

9

9

9

9

20MGV32

CREATIVITY & INNOVATION IN ENTREPRENEURSHIP

L T P C 3 0 0 3

OBJECTIVES:

- To develop the creativity skills among the learners
- To impart the knowledge of creative intelligence essential for entrepreneurs
- To know the applications of innovation in entprerenship.
- To develop innovative business models for business.

UNIT I CREATIVITY

Creativity: Definition- Forms of Creativity-Essence, Elaborative and Expressive Creativities-Quality of Creativity-Existential, Entrepreneurial and Empowerment Creativities – Creative Environment- Creative Technology- - Creative Personality and Motivation.

UNIT II CREATIVE INTELLIGENCE

Creative Intelligence: Convergent thinking ability – Traits Congenial to creativity – Creativity Training- -Criteria for evaluating Creativity-Credible Evaluation- Improving the quality of our creativity – Creative Tools and Techniques - Blocks to creativity- fears and Disabilities- Strategies for Unblocking- Designing Creativity Enabling Environment.

UNIT III INNOVATION

Innovation: Definition- Levels of Innovation- Incremental Vs Radical Innovation-Product Innovation and Process- Technological, Organizational Innovation – Indicators- Characteristics of Innovation in Different Sectors. Theories in Innovation and Creativity- Design Thinking and Innovation-Innovationas Collective Change-Innovation as a system

UNIT IV INNOVATION AND ENTREPRENEURSHIP

Innovation and Entrepreneurship: Entrepreneurial Mindset , Motivations and Behaviours-Opportunity Analysis and Decision Making- Industry Understanding - Entrepreneurial Opportunities-Entrepreneurial Strategies – Technology Pull/Market Push – Product -Market fit

UNIT V INNOVATIVE BUSINESS MODELS

Innovative Business Models: Customer Discovery-Customer Segments-Prospect Theory and Developing Value Propositions- Developing Business Models: Elements of Business Models – Innovative Business Models: Elements, Designing Innovative Business Models-ResponsibleInnovation and Creativity.

REFERENCES:

- 1. Creativity and Inovation in Entrepreneurship, Kankha, Sultan Chand
- 2. Pradip N Khandwalla, Lifelong Creativity, An Unending Quest, Tata Mc Graw Hill, 2004.Paul Trott, Innovation Management and New Product Development, 4e, Pearson, 2018.
- 3. Vinnie Jauhari, Sudanshu Bhushan, Innovation Management, Oxford Higher Education, 2014. Innovation Management, C.S.G. Krishnamacharyulu, R. Lalitha, Himalaya Publishing House, 2010.
- 4. A.Dale Timpe, Creativity, Jaico Publishing House, 2003.Brian Clegg, Paul Birch, Creativity, Kogan Page, 2009.
- 5. Strategic Innovation: Building and Sustaining Innovative Organizations- Course Era, Raj Echambadi.

TOTAL: 45 PERIODS

9

9

9

9

20MGV42 PRINCIPLES OF MARKETING MANAGEMENT L T P C FOR BUSINESS 3 0 0 3

OBJECTIVES:

- To provide basic knowledge of concepts, principles, tools and techniques of marketing forentrepreneurs
- To provide an exposure to the students pertaining to the nature and Scope of marketing, which they are expected to possess when they enter the industry as practitioners.
- To give them an understanding of fundamental premise underlying market driven strategies and the basic philosophies and tools of marketing management for business owners.

UNIT I INTRODUCTION TO MARKETING MANAGEMENT

Introduction - Market and Marketing – Concepts- Functions of Marketing - Importance of Marketing Marketing Orientations - Marketing Mix-The Traditional 4Ps - The Modern Components of the Mix -The Additional 3Ps - Developing an Effective Marketing Mix.

UNIT II MARKETING ENVIRONMENT

Introduction - Environmental Scanning - Analysing the Organisation's Micro Environment and Macro Environment - Differences between Micro and Macro Environment – Techniques of Environment Scanning - Marketing organization - Marketing Research and the Marketing Information System, Types and Components.

UNIT III PRODUCT AND PRICING MANAGEMENT

Product- Meaning, Classification, Levels of Products – Product Life Cycle (PLC) - Product Strategies - Product Mix - Packaging and Labelling - New Product Development - Brand and Branding - Advantages and disadvantages of branding Pricing - Factors Affecting Price Decisions - Cost Based Pricing - Value Based and Competition Based Pricing - Pricing Strategies - National and Global Pricing.

UNIT IV PROMOTION AND DISTRIBTUION MANAGEMENT

Introduction to Promotion – Marketing Channels- Integrated Marketing Communications (IMC) -Introduction to Advertising and Sales Promotion – Basics of Public Relations and Publicity -Personal Selling - Process - Direct Marketing - Segmentation, Targeting and Positioning (STP)-Logistics Management- Introduction to Retailing and Wholesaling.

UNIT V CONTEMPORARY ISSUES IN MARKETING MANAGEMENT

Introduction - Relationship Marketing Vs. Relationship Management - Customer Relationship Management (CRM) - Forms of Relationship Management - CRM practices - Managing Customer Loyalty and Development – Buyer-Seller Relationships- Buying Situations in Industrial / Business Market - Buying Roles in Industrial Marketing - Factors that Influence Business - Services Marketing E-Marketing or Online Marketing.

TOTAL: 45 PERIODS

9

9

9

9

a

REFERENCES

1. Marketing Management, Sherlekar S.A, Himalaya Publishing House, 2016.

2. Marketing Management, Philip Kortler and Kevin Lane Keller, PHI 15th Ed, 2015.

3 Marketing Management- An Indian perspective, Vijay Prakash Anand, Biztantra, Second edition, 2016.

4. Marketing Management Global Perspective, Indian Context, V.S.Ramaswamy &

KLNCE UG EEE R2020 (AY 2021-2022)

- S.Namakumari, Macmillan Publishers India,5th edition, 2015.
- 5. Marketing Management, S.H.H. Kazmi, 2013, Excel Books India.
- 6. Marketing Management- text and Cases, Dr. C.B.Gupta & Dr. N.Rajan Nair, 17th edition, 2016.

20MGV52HUMAN RESOURCE MANAGEMENT FOR
ENTREPRENEURSLTPC3003

OBJECTIVES:

- To introduce the basic concepts, structure and functions of human resource management for entrepreneurs.
- To create an awareness of the roles, functions and functioning of human resource department.
- To understand the methods and techniques followed by Human Resource Management practitioners.

UNIT I INTRODUCTION TO HRM

Concept, Definition, Objectives- Nature and Scope of HRM - Evolution of HRM - HR Manager Roles-Skills - Personnel Management Vs. HRM - Human Resource Policies - HR Accounting -HR Audit -Challenges in HRM.

UNIT II HUMAN RESOURCE PLANNING

HR Planning - Definition - Factors- Tools - Methods and Techniques - Job analysis- Job rotation- Job Description - Career Planning - Succession Planning - HRIS - Computer Applications in HR - Recent Trends.

UNIT III RECRUITMENT AND SELECTION

Sources of recruitment- Internal Vs. External - Domestic Vs. Global Sources -eRecruitment - Selection Process- Selection techniques -eSelection- Interview Types- Employee Engagement

UNIT IV TRAINING AND EMPLOYEE DEVELOPMENT

Types of Training - On-The-Job, Off-The-Job - Training Needs Analysis – Induction and Socialisation Process - Employee Compensation - Wages and Salary Administration – Health and Social SecurityMeasures- Green HRM Practices

UNIT V CONTROLLING HUMAN RESOURCES

Performance Appraisal – Types - Methods - Collective Bargaining - Grievances Redressal Methods – Employee Discipline – Promotion – Demotion - Transfer – Dismissal - Retrenchment -Union Management Relationship - Recent Trends

REFERENCES:

- 1) Gary Dessler and Biju Varkkey, Human Resource Management, 14e, Pearson, 2015.
- 2) Mathis and Jackson, Human Resource Management, Cengage Learning 15e, 2017.
- 3) David A. Decenzo, Stephen.P.Robbins, and Susan L. Verhulst, Human Resource Management, Wiley, International Student Edition, 11th Edition, 2014
- 4) R. Wayne Mondy, Human Resource Management, Pearson, 2015.
- 5) Luis R.Gomez-Mejia, David B.Balkin, Robert L Cardy. Managing Human Resource. PHILearning. 2012
- 6) John M. Ivancevich, Human Resource Management, 12e, McGraw Hill Irwin, 2013.
- 7) K. Aswathappa, Sadhna Dash , Human Resource Management Text and Cases , 9thEdition, McGraw Hill, 2021.
- 8) Uday Kumar Haldar, Juthika Sarkar. Human Resource management. Oxford. 2012

9

TOTAL: 45 PERIODS

9

a

9

20MGV62

L FINANCING NEW BUSINESS VENTURES 3

т Ρ С

0 3 0

9

9

9

9

OBJECTIVES:

- To develop the basics of business venture financing. •
- To impart the knowledge essential for entrepreneurs for financing new ventures. ٠
- To acquaint the learners with the sources of debt and guity financing.
- To empower the learners towards fund rasiing for new ventures effectively.

UNIT I **ESSENTIALS OF NEW BUSINES VENTURE**

Setting up new Business Ventures - Need - Scope - Franchising - Location Strategy, Registration Process - State Directorate of Industries- Financing for New Ventures - Central and State Government Agencies - Types of loans - Financial Institutions - SFC, IDBI, NSIC and SIDCO.

UNIT II INTRODUCTION TO VENTURE FINANCING

Venture Finance - Definition - Historic Background - Funding New Ventures- Need - Scope -Types - Cost of Project - Means of Financing - Estimation of Working Capital - Requirement of funds - Mixof Dent and Equity - Challenges and Opportunities.

SOURCES OF DEBT FINANCING UNIT III

Fund for Capital Assets - Term Loans - Leasing and Hire-Purchase - Money Market instruments - Bonds, Corporate Papers - Preference Capital- Working Capital Management- Fund based Credit Facilities - Cash Credit - Over Draft.

SOURCES OF EQUITY FINANCING UNIT IV

Own Capital, Unsecured Loan - Government Subsidies, Margin Money- Equity Funding -Private Equity Fund- Schemes of Commercial banks - Angel Funding - Crowdfunding- Venture Capital.

UNIT V METHODS OF FUND RAISING FOR NEW VENTURES 9

Investor Decision Process - Identifying the appropriate investors- Targeting investors-Developing Relationships with investors - Investor Selection Criteria- Company Creation-Raising Funds - SeedFunding- VC Selection Criteria - Process- Methods- Recent Trends

TOTAL: 45 PERIODS

- Principles of Corporate Finance by Brealey and Myers et al.,12TH ed, McGraw Hill Education(India) Private Limited, 2018
- 2. Prasanna Chandra, Projects : Planning ,Analysis, Selection,Financing, Implementation and Review, McGraw Hill Education India Pvt Ltd ,New Delhi , 2019.
- 3. Introduction to Project Finance. Andrew Fight, Butterworth-Heinemann, 2006.
- 4. Metrick, Andrew; Yasuda, Ayako. Venture Capital And The Finance Of Innovation. Venture Capital And The Finance Of Innovation, 2nd Edition, Andrew Metrick And Ayako Yasuda, Eds., JohnWiley And Sons, Inc, 2010.
- 5. Feld, Brad; Mendelson, Jason. Venture Deals. Wiley, 2011.
- 6. May, John; Simons, Cal. Every Business Needs An Angel: Getting The Money You Need ToMake Your Business Grow. Crown Business, 2001.
- 7. Gompers, Paul Alan; Lerner, Joshua. The Money Of Invention: How Venture Capital Creates
- 8. New Wealth. Harvard Business Press, 2001.
- Camp, Justin J. Venture Capital Due Diligence: A Guide To Making Smart InvestmentChoices And Increasing Your Portfolio Returns. John Wiley & Sons, 2002.
- 10. Byers, Thomas. Technology Ventures: From Idea To Enterprise. Mcgraw-Hill HigherEducation, 2014.
- 11. Lerner, Josh; Leamon, Ann; Hardymon, Felda. Venture Capital, Private Equity, And TheFinancing Of Entrepreneurship. 2012.