

K.L.N. College of Engineering

(An Autonomous Institution Affiliated to Anna University, Chennai)

l by National Assessment and Accreditation Council (NAAC) Pottapalayam – 630612.(11 km From Madurai City) TamilNadu, India.

Department of Mechanical Engineering

Accredited by NBA, New Delhi Approved Research Center by Anna University, Chennai Approved Nodal Center for e – YANTRA Lab

Regulations – 2020

Even Semester

20ME6L1 Computer Aided Simulation and Analysis Laboratory

Laboratory Manual

Lab In charge

Mr. E.V. Ganesh Babu, Assistant Professor / Mech.

Prepared by

Approved by

Mr. E.V. Ganesh Babu, Asst. Prof. / Mech.

Dr. P. Udhayakumar HOD / Mech. Engg.

DEPARTMENT OF MECHANICAL ENGINEERING

VISION

To become a Centre of excellence for Education and Research in Mechanical Engineering.

MISSION

>Attaining academic excellence through effective teaching learning process and state of the art infrastructure.

> Providing research culture through academic and applied research.

>Inculcating social consciousness and ethical values through co-curricular and extra-curricular activities.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO I	Graduates will have successful career in Mechanical Engineering and service industries.	
PEO II	Graduates will contribute towards technological development through academic research and industrial practices.	
PEO III	Graduates will practice their profession with good communication, leadership, ethics and social responsibility.	
PEO IV	Graduates will adapt to evolving technologies through lifelong learning.	

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1	Derive technical knowledge and skills in the design, develop, analyze and manufacture of mechanical systems with sustainable energy, by the use of modern tools and techniques and applying research based knowledge.	
PSO 2	Acquire technical competency to face continuous technological changes in the field of mechanical engineering and provide creative, innovative and sustainable solutions to complex engineering problems.	
PSO 3	Attain academic and professional skills for successful career and to serve the society needs in local and global environment.	

K.L.N. College of Engineering

(An Autonomous Institution Affiliated to Anna University, Chennai)

l by National Assessment and Accreditation Council (NAAC) Pottapalayam – 630612.(11 km From Madurai City) TamilNadu, India.

Department of Mechanical Engineering

Accredited by NBA, New Delhi Approved Research Center by Anna University, Chennai Approved Nodal Center for e – YANTRA Lab

Regulations – 2020

Even Semester

20ME6L1 Computer Aided Simulation and Analysis Laboratory

Laboratory Manual

Lab In charge

Mr. E.V. Ganesh Babu, Assistant Professor / Mech.

Prepared by

Approved by

Mr. E.V. Ganesh Babu, Asst. Prof. / Mech.

Dr. P. Udhayakumar HOD / Mech. Engg.

GENERAL INSTRUCTIONS FOR LABORATORY CLASSES

- > Students must attend the lab classes with ID cards.
- > Boy should "TUCK IN" the shirts.
- Students should wear uniform only.
- > LONG HAIR should be protected.
- > Any other website **should not be operated** other than the prescribed one for that day.
- POWER SUPPLY to your test table should be obtained only through the LAB TECHNICIAN.
- Any damage to any of the equipment/instrument/machine caused due to carelessness, the cost will be fully recovered from the individual (or) group of students.

Name :		Batch		
Roll No.:	Year	Semester	Section :	

Index

S. No.	Date	Name of the Experiment	Page	Marks	Staff Signature
1.					
2.					
3.					
4.					
5.					
6.					
7.					
8.					
9.					
10.					
11.					
12.					
13.					
14.					
15.					
16.					
17.					
18.					
19.					

S. No.	Date	Name of the Experiment	Page	Marks	Staff Signature
20.					
21.					
22.					
23.					
24.					
25.					
26.					
27.					
28.					
29.					
30.					
31.					
32.					
33.					
34.					
35.					
36.					
37.					
38.					
39.					

Completed date:

Average Mark:

20ME6L1

COMPUTER AIDED SIMULATION AND ANALYSIS LABORATORY

L T P C 0 0 3 1.5

OBJECTIVES:

- To understand the applications of various software tools for analysis
- To understand geometric modeling in analysis software.
- To find the stress and other related parameters of bars, beams loaded with loading conditions.
- To derive the output from the analysis software.
- To solve real time problems using these tools..

PREREQUISITE:

Course Code: 20ME301, 20ME304, 20ME502 Course Name: Strength of Materials, Thermal engineering, Dynamics of Machinery

LIST OF EXPERIMENTS

- 1. 1D application problems like composite walls/beams
- 2. 2D application problems like flat plates, simple shells, cylinder
- 3. Stress analysis of axi symmetric components.
- 4. Modal analysis (Beams).
- 5. 3D modeling of pulley.
- 6. 3D analysis of rotating shaft.
- 7. Nonlinear analysis using contact elements.
- 8. Thermo mechanical analysis of plate.
- 9. Transient analysis of Fin.

TOTAL: 45PERIODS

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

S. NO.	NAME OF THE EQUIPMENT	Qty.
1.	Computer work station	30
2.	Printer	1
3.	Ansys Software	30 licenses

Cycle A - Simulation

Ex No : 1

Date :

MATLAB basics, Dealing with matrices, Graphing-Functions of one variable and two variables

Aim: To the basics of MATLB dealing with matrices and to draw graph of one variable and two variables using MATLAB software.

Basic MATLAB Programming and matrix operations.

MATLAB is a matrix-based language. Since operations may be performed on each entry of a matrix, "for" loops can often be by passed by using this option. As a consequence, MATLAB programs are often much shorter and easier to read than programs written for instance in C or Fortran. Below, we mention basic MATLAB commands, which will allow a novice to start using this software.

1. Defining a row matrix and performing operations on it. Assume that you want to evaluate the function $f(x) = x^3 - 6x^2 + 3$ at different values of x. This can be accomplished with two lines of MATLAB code.

%Define the values of x

X=0:0.1:1;

%Evaluate f

 $f = x.^3 - 6*x.^2 + 3;$

In this example, x varies between o and 1 in steps of 0.01. Comments are preceded by a % sign. The symbols ^ and * stands for the power and multiplication operators respectively. The dot in front of ^n indicates that each entry of the row matrix x is raised to the power n. In the absence of this dot, MATLAB would try to take the nth power of x, and an error message would be produced since x is not a square matrix. A semicolon at the end of a command line indicates that the output should not be printed on the screen.

Exercises:

- 1. Type size (x) to find out what the size of x is
- 2. Evaluate the cosine and sine of x
- 3. Define a square matrix

 $A = (1 \ 2 \ 3 \ 4)$ by typing $A = [1 \ 2; \ 3 \ 4]$. Then compute the square of A (type A^2) and compare the result to that obtained by typing A.².

- Define matrix A and B with any size and perform the value of A+B, A-B, A*B, A/B, A^2*B, A*A
- 2. Verify A*B is not equal to B*A
- 3. A*inv(A)=identity Matrix

2. Plotting the graph of a function of one variable

The command plot(x,f) plots f as a function of x. The figure can be edited by hand to add labels, change the thickness of the line of the plot, add markers, change the axes etc. All of these attributes can also be specified as part of the plot command.

Exercises:

- 1. Plot (x, sin(x))
- 2. Plot $(x, \cos(x))$
- 3. plot(x,sin(x), -b', x, cos(x), --r')
- 4. Plot the graph of exp(x) for x = (-5, 10)

3. Plotting the graph of a function of two variables

Assume that we want to use MATLAB to plot the graph of $f(x,y) = x^2 - 3y^2$

for x =-3:0.01:3 for y = -5:0.01:5

We first need to define a numerical grid where the function f will be evaluated. To this end, define the matrices x and y,

(x,y) = meshgrid(x,y)

Then, evaluate f at the points on the grid and put the result in a matrix Z

Z= x.^2-3*y.^2;

Finally, plot the graph of f with the following command surf (x,y,z), shading interp. The surface can be rotated by typing rotate 3D, or by clicking on the rotation icon on the figure. Plot (x,z)

Exercises

- 1. Plot the graph of $f(x) = \exp(-2x^2-3y^2)$. Choose appropriate intervals for x and y.
- 2. Plot the graph of f(x) = cos(x) sin(y). Choose appropriate intervals for x and y.
- 3. Change the color map of one of the plots above by using the commands color map bone or colormap jet or colormap cool.

Matlab Program for Surface

```
x=-3:0.25:3;
y=-5:0.25:5;
[x,y] = meshgrid(x,y);
z=x.^2-(3*y.^2);
surf(x,y,z)
xlabel('x'); ylabel('y')
zlabel('z')
```


Result:

Thus the basics of MATLAB dealing with matrices are studied and the graph for one variable and two variables are drawn using MATLAB software.

Date :

KLNCE

Use of MATLAB to solve simple problems in vibration

Problem Definition

Spring Mass Damper System – Unforced Response

Solve for five cycles, the response of an unforced system given by the equation

 $m x^+ c x^+ kx = (1)$

For c = 2; m = 1 kg; k = 100 N/m; x(0) = 10 m; x(0) = -8;

Aim:

To find the natural vibration of spring mass system using MATLAB software.

Solution

$$\begin{split} X(t) &= A \ e^{-\xi \ Wn \ t} \sin (Wd \ t + \Phi) \\ A &= (1/wd)^* (sqrt(((vo + zeta^*wn^*xo)^2) + ((xo^*wd)^2))) \\ \Phi &= \arctan((xo^*wd)/(vo + zeta^*wn^*xo)) \end{split}$$

 $\xi = c/(2*m*wn)$

Natural frequency wn=sqrt(k/m)

Mat Lab Program

 $m=1; \\ k=100; \\ c=2; \\ vo=1/1000; \\ xo=1/1000; \\ t=linspace(0,4,100); \\ wn=sqrt(k/m); \\ zeta=c/(2*m*wn); \\ wd=wn*sqrt(1-zeta^2); \\ A=(1/wd)*(sqrt(((vo+zeta*wn*xo)^2)+((xo*wd)^2))); \\ ang=atan((xo*wd)/(vo+zeta*wn*xo)); \\ xt=A*sin(t*wd+ang).*exp(-zeta*t*wn); \\ display(c) \\ plot(t,xt)$

KLNCE

grid on

ylabel('x(t)')

xlabel ('t')

Result:

Thus the natural vibration of spring mass system is obtained using MATLAB software.

Ex No : 3

Date :

Mechanism Simulation using Multibody Dynamic software

Problem Definition:

Assemble the given components of Geneva drive mechanism and simulate using multibody dynamic software.

Aim: To assemble the given components and simulate the Geneva drive mechanism using Creo 3.0 software.

ALL DIMENSIONS ARE IN MM

Procedure:

- 1. Assemble the given components using user defined mating condition.
- 2. Attach the servo motor and give the velocity.
- 3. Go to the mechanism analysis and give the start time and end time.
- 4. Run the given mechanism.
- 5. Save the analysis definition file.

Result:

Thus the simulation of Geneva mechanism is done using Creo 3.0 software.

Ex No : 1

Date :

INTRODUCTION to FEA and ANSYS

Cycle B - Analysis

What is FEA?

- 1. Finite Element analysis is a way to simulate loading conditions on a design and determine the design response to those conditions.
- 2. The design is modeled using discrete building blocks called elements.
- 3. Each element has exact equations that describe how it responds to a certain load.
- 4. The "Sum" of the response of all elements in the model gives the total response of the design.
- 5. The elements have a finite number of unknowns, hence the name finite elements.
- 6. The finite element model, which has a finite number of unknowns, can only approximate the response of the physical system which has infinite unknowns.

How good is the approximation?

Unfortunately, there is no easy answer to this question, it depends entirely on what you are simulating and the tools you use for the simulation.

Why is FEA needed?

- 1. To reduce the amount of prototype testing.
- 2. Computer Simulation allows multiple "what if scenarios to be tested quickly and effectively.
- 3. To simulate designs those are not suitable for prototype testing. E.g. Surgical Implants such as an artificial knee.

About ANSYS:

• ANSYS is a complete FEA software package used by engineers worldwide in virtually all fields of engineering. ANSYS is a virtual Prototyping technique used to iterate various scenarios to optimize the product.

General Procedure of Finite Element Analysis:

- 1. Creation of geometry or continuum using preprocessor.
- 2. Discretization of geometry or continuum using preprocessor.
- 3. Checking for convergence of elements and nodes using preprocessor.
- 4. Applying loads and boundary conditions using preprocessor.
- 5. Solving or analyzing using solver
- 6. Viewing of Results using postprocessor.

Build Geometry:

Construct a two (or) three dimensional representation of the object to be modeled and tested using the work plane co-ordinate system in Ansys.

Define Material Properties:

Define the necessary material from the library that composes the object model which includes thermal and mechanical properties.

Generate Mesh:

Now define how the model system should be broken down into finite pieces.

Apply Loads:

• The last task in preprocessing is to restrict the system by constraining the displacement and physical loading.

Obtain Solution:

• The solution is obtained using solver available in ANSYS. The computer can understand easily if the problem is solved in matrices.

Present the Result:

• After the solution has been obtained there are many ways to present Ansys result either in graph or in plot.

Specific Capabilities of ANSYS Structural Analysis:

• Structural analysis is probably the most the common application of the finite element method such as piston, machine parts and tools.

Static Analysis:

• It is the used to determine displacement, stress etc. under static loading conditions. Ansys can compute linear and non-linear types (e.g. the large strain hyper elasticity and creep problems).

Transient Dynamic Analysis:

• It is used to determine the response of a structure to time varying loads.

Buckling Analysis:

 It is used to calculate buckling load and to determine the shape of the component after applying the buckling load. Both linear buckling and non – linear buckling analysis are possible.

Thermal Analysis:

The steady state analysis of any solid under thermal boundary conditions calculates the effect of steady thermal load on a system (or) component that includes the following.

- a) Convection.
- b) Radiation.
- c) Heat flow rates.
- d) Heat fluxes.
- e) Heat generation rates.
- f) Constant temperature boundaries.

Fluid Flow:

• The ANSYS CFD offers comprehensive tools for analysis of two-dimensional and three dimensional fluid flow fields.

Magnetic:

 Magnetic analysis is done using Ansys / Electromagnetic program. It can calculate the magnetic field in device such as power generators, electric motor etc. Interest in magnetic analysis is finding magnetic flux, magnetic density, power loss and magnetic forces.

Acoustic / Vibrations:

- Ansys is the capable of modeling and analyzing vibration system. Acoustic is the study of the generation, absorption and reflection of pressure waves in a fluid application.
- Few examples of acoustic applications are
 - a) Design of concert house, where an even distribution of sound pressure is possible.
 - b) Noise cancellation in automobile.
 - c) Underground water acoustics.
 - d) Noise minimization in machine shop.
 - e) Geophysical exploration.

Coupled Fields:

 A coupled field analysis is an analysis that takes into account the interation between two (or) more fields of engineering analysis. Pressure vessels, Induction heating and Micro electro mechanical systems are few examples.

Result:

Thus the basics of FEA and ANSYS are studied.

Ex No : 2

Force and stress analysis using Link elements in Trusses

Problem Specification:

Find the reaction forces, axial forces and stresses at each node for the following truss. Also find the deflection at each node.

Cross-sectional area of truss members = $3.0E-4 \text{ m}^2$; Modulus of Elasticity = $2.07E11 \text{ N/m}^2$. Circled numbers shown are node numbers. Poisson's ratio = 0.3

Aim:

To find the reaction forces, axial forces and stresses at each node for the given truss and also find the deflection at each node using ANSYS software

Procedure:

1. Preferences

```
a. Click \rightarrow Main Menu \rightarrow Preferences \rightarrow Click Structural \rightarrow Click OK.
```

2. Element Type

a. Element Type \rightarrow Add / Edit / Delete \rightarrow Add \rightarrow Link \rightarrow 2D spar \rightarrow OK

3. Real Constants

a. Real Constants \rightarrow Add / Edit / Delete \rightarrow Add \rightarrow OK

b. Enter \rightarrow Area = 3.0e-4 \rightarrow Click OK.

4. Materials Props

a. Preprocessor \rightarrow Materials Props \rightarrow Materials Models \rightarrow Structural \rightarrow Linear

```
\rightarrow Elastic \rightarrow Isotropic \rightarrow Ex: 2.07E11 \rightarrow Prxy : 0.3 \rightarrow Ok
```

b. Materials \rightarrow Exit

5. Modeling

a. Modeling → Create → nodes → In active CS → Enter point.
b. 1 → 0,0 2 → 3,0 3 → 6,0 4 → 9,0 5 → 12,0 6 → 3,3 7 → 6,3 8 → 9,3
c. Create → Elements → through auto numbered → Select nodes for element → 1 → 1,2 2 → 2,3 3 → 3,4 4 → 4,5 5 → 1,6 6 → 2,6 7 → 3,6 8 → 3,7 9 → 3,8 10 → 4,8 11 → 5,8 12 → 6,7 13 → 7,8 → Click OK.

7. Solution

- a. Solution → Define Loads → Apply → Structural → Displacement → on nodes
 → Select node Point 5 → Click OK → Select All DOF Constrained. Select node
 Point 1 → Select (FY) → enter the value =0 Click OK
- b. Force/ moment →on nodes → Select node point 2 → Select (FY) → Enter Value of -125 → Click OK → Select node point 3 → Select (FY) → Enter Value of -100 → Click OK
- c. Solution \rightarrow Solve \rightarrow Current LS \rightarrow OK.

8. General Post proc

- a. General Post proc \rightarrow Plot Results \rightarrow Deformed Shape \rightarrow Def+Undeformed \rightarrow OK.
- b. UtilityMenu \rightarrow Plot Ctrls \rightarrow Hardcopy \rightarrow To file \rightarrow pick JPEG \rightarrow save to (enter file name)
- c. List result \rightarrow Reaction solution \rightarrow ok \rightarrow save to file.
- d. sList result \rightarrow Element solution \rightarrow ok \rightarrow save to file.
- e. General Postproc -> List Results -> Nodal Solution -> DOF Solution -> ALL DOFs \rightarrow save to file.

Inference:

Analysis of truss is used mainly in civil engineering (Eg: Roof structures)

Result:

Thus the reaction forces, axial forces and stresses at each node for the given truss and also the deflection at each node is found using ANSYS software

KLNCE

Ex No 3(a)

Date :

Stress Analysis of Cantilever Beam

Problem Specification:

Aim:

To find deformed shape, shear force diagram and bending moment diagram for the Cantilever beam using ANSYS software

Procedure:

1. Preferences

a. Click \rightarrow Main Menu \rightarrow Preferences \rightarrow Click Structural \rightarrow Click OK.

2. Element Type

a. Element Type \rightarrow Add / Edit / Delete \rightarrow Add \rightarrow Beam \rightarrow 2D Elastic 3 \rightarrow OK

3. Real Constants

a. Real Constants \rightarrow Add / Edit / Delete \rightarrow Add \rightarrow OK

b. Enter \rightarrow Area = 100, Izz = 833.33, Height = 10 \rightarrow Click OK.

4. Materials Props

a. Preprocessor \rightarrow Materials Props \rightarrow Materials Models \rightarrow Structural \rightarrow Linear \rightarrow Elastic \rightarrow Isotropic \rightarrow Ex: 2.1e5 \rightarrow Prxy : 0.3 \rightarrow Ok

b. Materials \rightarrow Exit

5. Modeling

a. Modeling \rightarrow Create \rightarrow Key points \rightarrow In active CS \rightarrow Enter Key point.

b.1 \rightarrow 0,0,0 2 \rightarrow 100,0,0

c. Lines \rightarrow Lines \rightarrow Straight Lines \rightarrow Select Key point 1&2 \rightarrow Click OK.

Deformed shape

Shear forces Diagram

Bending Moment Diagram

6. Meshing

- a. Mesh Tool \rightarrow Size control \rightarrow Global \rightarrow Size \rightarrow Enter No. of Division = 25 \rightarrow OK. b. Mesh Tool \rightarrow Mesh \rightarrow (Select the line) \rightarrow OK
- c. Plot Cltrs (Main Menu) \rightarrow Style \rightarrow Size and shape \rightarrow Display of Element (ON) \rightarrow OK
- d. Plot Cltrs (Main Menu) \rightarrow Style \rightarrow Size and shape \rightarrow Display of Element (OFF) \rightarrow OK

7. Solution

- a. Solution \rightarrow Define Loads \rightarrow Apply \rightarrow Structural \rightarrow Displacement \rightarrow on Key Points \rightarrow Select key Points 1 \rightarrow Click OK \rightarrow Select All DOF Constrained.
- b. Force/ moment \rightarrow Select key point 2 \rightarrow Select (FY) \rightarrow Enter Value of -100 \rightarrow Click OK.
- c. Solution \rightarrow Solve \rightarrow Current LS \rightarrow OK.

8. General Post proc

- a. General Post proc \rightarrow Plot Results \rightarrow Deformed Shape \rightarrow Def+Undeformed \rightarrow OK.
- b. UtilityMenu \rightarrow Plot Ctrls \rightarrow Hardcopy \rightarrow To file \rightarrow pick JPEG \rightarrow save to (enter file name)
- c. Element Table \rightarrow Define Table \rightarrow Add \rightarrow Select By Sequence \rightarrow SM1SC,2 \rightarrow apply,
- d. Select By Sequence \rightarrow SM1SC,6 \rightarrow apply
- e. Select By Sequence \rightarrow SM1SC,8 \rightarrow apply
- f. Select By Sequence \rightarrow SM1SC,12 \rightarrow apply \rightarrow OK.

9. Plot Result

a. Plot Result \rightarrow Contour Plot \rightarrow Line Element Resolution \rightarrow

```
b.Select SMISC2 + SMISC8 for S.F.D. \rightarrow OK
```

- c. UtilityMenu \rightarrow Plot Ctrls \rightarrow Hardcopy \rightarrow To file \rightarrow pick JPEG \rightarrow save to (enter file name)
- d. Select SMISC6 + SMISC12 for B.M.D. \rightarrow OK
- e. UtilityMenu \rightarrow Plot Ctrls \rightarrow Hardcopy \rightarrow To file \rightarrow pick JPEG \rightarrow save to (enter file name)

Inference:

Analysis of beam is used mainly in civil engineering (Eg: Bridges, Roof structures)

Result:

Thus the deformed shape, shear force diagram and Bending moment diagram are obtained for the Cantilever Beam using ANSYS software.

Ex No :3(*b*)

Date :

Stress Analysis of Simply Supported Beam with UDL

Problem Specification:

Aim:

To find deformed shape, shear force diagram and bending moment diagram for the simply supported beam with UDL using ANSYS software

1. Preferences

a. Click \rightarrow Main Menu \rightarrow Preferences \rightarrow Click Structural \rightarrow Click OK.

2. Element Type

a. Element Type \rightarrow Add / Edit / Delete \rightarrow Add \rightarrow Beam \rightarrow 2D Elastic 3 \rightarrow OK

3. Real Constants

a. Real Constants \rightarrow Add / Edit / Delete \rightarrow Add \rightarrow OK

b. Enter \rightarrow Area = 1, Izz = 0.083333, Height = 1 \rightarrow Click OK.

4. Materials Props

a.Preprocessor \rightarrow Materials Props \rightarrow Materials Models \rightarrow Structural \rightarrow Linear \rightarrow Elastic \rightarrow Isotropic \rightarrow Ex: 2.1e11 \rightarrow Prxy: 0.3 \rightarrow Ok Materials \rightarrow Exit

5. Modeling

a. Modeling \rightarrow Create \rightarrow Key points \rightarrow In active CS \rightarrow Select Key point.

 $b.1 \rightarrow 0,0,0 \qquad 2 \rightarrow 12,0,0$

c. Lines \rightarrow Lines \rightarrow Straight Lines \rightarrow Select Key point 1&2 \rightarrow Click OK.

1 DISPLACEMENT STEP=1 SUB =1	Nemcommercial use only
11RE-1 DMX =.154E-06	JUL 22 2011 11:41:57
x	

Shear force Diagram

Bending Moment Diagram
6. Meshing

- a. Mesh Tool \rightarrow Size control \rightarrow Global \rightarrow Size \rightarrow Enter No. of Division $\rightarrow 25 \rightarrow$ OK.
- b. Mesh Tool \rightarrow Mesh \rightarrow (Select the line) \rightarrow OK
- c. Plot Cltrs (Main Menu) \rightarrow Style \rightarrow Size and shape \rightarrow Display of Element (ON) \rightarrow OK
- d. Plot Cltrs (Main Menu) \rightarrow Style \rightarrow Size and shape \rightarrow Display of Element (OFF) \rightarrow OK

7. Solution

- a.Solution \rightarrow Define Loads \rightarrow Apply Structural \rightarrow Displacement \rightarrow on Key Points \rightarrow Select key Points 1 and 2 \rightarrow Select (Ux, Uy)Constrained \rightarrow OK.
- b. Pressure \rightarrow on Beam \rightarrow Select Pick all \rightarrow OK \rightarrow enter the value = 100 \rightarrow OK.
- c.Solution \rightarrow Solve \rightarrow Current LS \rightarrow OK.

8. General Post proc

- a. General Post proc \rightarrow Plot Results \rightarrow Deformed Shape \rightarrow Def + Undeformed \rightarrow OK.
- b. Utility Menu \rightarrow Plot Ctrls \rightarrow Hardcopy \rightarrow To file \rightarrow pick JPEG \rightarrow save to (enter file name)
- c. Element Table \rightarrow Define Table \rightarrow Add \rightarrow Select By Sequence \rightarrow SM1SC,2 \rightarrow apply, Select By Sequence \rightarrow SM1SC,6 \rightarrow apply
 - Select By Sequence \rightarrow SM1SC,8 \rightarrow apply
 - Select By Sequence \rightarrow SM1SC,12 \rightarrow apply \rightarrow OK.

9. Plot Result

- a. Plot Result \rightarrow Contour Plot \rightarrow Line Element Resolution \rightarrow Select SMISC2 + SMISC8 for S.F.D. \rightarrow OK
- b. UtilityMenu \rightarrow Plot Ctrls \rightarrow Hardcopy \rightarrow To file \rightarrow pick JPEG \rightarrow save to (enter file name)
- c. Select SMISC6 + SMISC12 for B.M.D. \rightarrow OK
- d. UtilityMenu \rightarrow Plot Ctrls \rightarrow Hardcopy \rightarrow To file \rightarrow pick JPEG \rightarrow save to (enter file name)

Inference:

Analysis of beam is used mainly in civil engineering (Eg: Bridges, Roof structures)

Result:

Thus the deformed shape, shear force diagram and Bending moment diagram are plotted for the simply supported beam with UDL using ANSYS software

KLNCE

Ex No: 3(c)

Date :

Stress Analysis of Fixed End Beam with Point Load

Problem Specification:

Aim:

To find the deformed shape, shear force diagram and bending moment diagram for Fixed end Beam with point load.

Procedure:

1. Preferences

a. Click \rightarrow Main Menu \rightarrow Preferences \rightarrow Click Structural \rightarrow Click OK.

2.Element Type

a. Element Type \rightarrow Add / Edit / Delete \rightarrow Add \rightarrow Beam \rightarrow 2D Elastic 3 \rightarrow OK

3. Real Constants

a. Real Constants \rightarrow Add / Edit / Delete \rightarrow Add \rightarrow OK

b. Enter \rightarrow Area = 1, Izz = 0.083333, Height = 1 \rightarrow Click OK.

4. Materials Props

a. Preprocessor \rightarrow Materials Props \rightarrow Materials Models \rightarrow Structural \rightarrow Linear \rightarrow Elastic \rightarrow Isotropic \rightarrow Ex: 2.1e11 \rightarrow Prxy : 0.3 \rightarrow Ok

b. Materials \rightarrow Exit

5. Modeling

a. Modeling \rightarrow Create \rightarrow Key points \rightarrow In active CS \rightarrow Select Key point.

 $b.1 \rightarrow 0,0,0 \qquad 2 \rightarrow 6,0,0 \qquad 3 \rightarrow 12,0,0$

c. Lines \rightarrow Lines \rightarrow Straight Lines \rightarrow Select Key point 1&2and 2&3 \rightarrow Click OK.

Deformed Shape

Shear Force Diagram

Bending Moment Diagram

6. Meshing

- a. Meshing \rightarrow Size control \rightarrow Global \rightarrow Size \rightarrow select the line \rightarrow Enter No.of Divisions= 25 \rightarrow OK.
- b. Mesh Tool \rightarrow Mesh \rightarrow (Select the line) \rightarrow OK
- c. Plot Cltrs (Main Menu) \rightarrow Style \rightarrow Size and shape \rightarrow Display of Element (ON) \rightarrow OK
- d. Plot Cltrs (Main Menu) \rightarrow Style \rightarrow Size and shape \rightarrow Display of Element (OFF) \rightarrow OK

7. Solution

- a. Solution \rightarrow Define Loads \rightarrow Apply Structural \rightarrow Displacement \rightarrow on Key Points \rightarrow Select key Points 1 and 3 \rightarrow Select All DOF Constrained \rightarrow Click OK.
- b. Force moment \rightarrow on key point 2 (Centre) \rightarrow Select (**FY**) \rightarrow Enter Value of 1000 \rightarrow Click OK.
- c. Solution \rightarrow Solve \rightarrow Current LS \rightarrow OK.

8. General Post proc

- a. General Post proc \rightarrow Plot Results \rightarrow Deformed Shape \rightarrow Def + Undeformed \rightarrow OK.
- b. Utility Menu \rightarrow Plot Ctrls \rightarrow Hardcopy \rightarrow To file \rightarrow pick JPEG \rightarrow save to (enter file name)
- c. Element Table \rightarrow Define Table \rightarrow Add \rightarrow Select By Sequence \rightarrow SM1SC,2 \rightarrow apply,
- d. Select By Sequence \rightarrow SM1SC,6 \rightarrow apply
- e. Select By Sequence \rightarrow SM1SC,8 \rightarrow apply
- f. Select By Sequence \rightarrow SM1SC,12 \rightarrow apply \rightarrow OK.

9. Plot Result

- a. Plot Result \rightarrow Contour Plot \rightarrow Line Element Resolution \rightarrow Select SMISC2 + SMISC8 for S.F.D. \rightarrow OK
- b. Utility Menu \rightarrow Plot Ctrls \rightarrow Hardcopy \rightarrow To file \rightarrow pick JPEG \rightarrow save to (enter file name)
- c. Select SMISC6 + SMISC12 for B.M.D. \rightarrow OK
- d. Utility Menu \rightarrow Plot Ctrls \rightarrow Hardcopy \rightarrow To file \rightarrow pick JPEG \rightarrow save to (enter file name)

Inference:

Analysis of beam is used mainly in civil engineering (Eg: Bridges, Roof structures)

Result:

Thus the deformed shape, shear force diagram and Bending moment diagram are plotted for the Fixed End Beam with point load using ANSYS software.

Date :

Stress Analysis of A Plate With A Circular Hole

Consider the square plate of uniform thickness with a circular hole with dimensions shown in the figure below. The thickness of the plate is 1 mm. The Young's modulus $E=10^7 MPa$ and the Poisson ratio is 0.3. A uniform pressure = 1 MPa act son the boundary of the hole. Assume that plane stress conditions prevail. Find stress and displacement fields using ANSYS software.

 $E = 1e13 \text{ N/m}^2 \qquad \gamma = 0.3 \qquad P = 1e6 \text{ N/m}^2$ a = 10e-3 m r = 7e-3 m

Aim:

To find the deformation shape and nodal stress analysis of rectangular component with hole.

1. Preferences

a. Main Menu \rightarrow Preferences \rightarrow Structural \rightarrow OK.

2. Element Type

a. Element Type \rightarrow Add / Edit / Delete \rightarrow Add... \rightarrow Pick Structural Solid \rightarrow Quad4node42 \rightarrow OK

3. Real Constants

a. Real Constants \rightarrow Add / Edit / Delete > Add \rightarrow OK.

4. Materials Props

a. Material Props \rightarrow Material Models.... \rightarrow Structural, Linear, Elastic, and Isotropic \rightarrow Enter **EX**, = 1e13, **PRXY = 0.3** Click **OK**.

Deformed shape

5. Modeling

- a. Modeling \rightarrow Create \rightarrow Areas \rightarrow Rectangle \rightarrow By 2 corners \rightarrow X=0, Y = 0, width = 10e-3, height = 10e-3
- b. Modeling \rightarrow Create \rightarrow Areas \rightarrow Circle \rightarrow solid circle \rightarrow WP X = 0, WP Y = 0, Rad = 7e-3
- c. Modeling \rightarrow Operate \rightarrow Booleans \rightarrow Subtract \rightarrow Areas \rightarrow pick square area by using left mouse button \rightarrow OK. \rightarrow pick circular area \rightarrow Click OK.

6. Meshing

a. Mesh Tool \rightarrow click smart size \rightarrow set size = 5 \rightarrow free mesh \rightarrow pick the area \rightarrow OK.

7. Solution

- a. Loads \rightarrow Define Loads \rightarrow Apply \rightarrow Structural \rightarrow Displacement \rightarrow Symmetry B.C. \rightarrow On Lines \rightarrow Select left and bottom edges \rightarrow OK.
- b. Loads \rightarrow Define Loads \rightarrow Apply \rightarrow Structural \rightarrow Pressure \rightarrow On Lines \rightarrow Pressure Value = 1e6 \rightarrow OK.
- c. Solve \rightarrow Current LS \rightarrow OK.

8. General Post proc

- a. General Post proc \rightarrow Plot Results \rightarrow Deformed Shape \rightarrow Select(Def + undeformed) and click OK.
- b. Utility Menu \rightarrow Plot Ctrls \rightarrow Hardcopy \rightarrow To file \rightarrow pick JPEG \rightarrow save to (enter file name)
- c. Utility Menu \rightarrow Plot Ctrls \rightarrow Animate \rightarrow Deformed Shape... \rightarrow Select Def + undeformed and click OK
- d. General Post proc \rightarrow Plot results \rightarrow Contour Plot \rightarrow Nodal Solu \rightarrow Select Stress from the left list, vonmises from the right list and click OK
- e. Utility Menu \rightarrow Plot Ctrls \rightarrow Hardcopy \rightarrow To file \rightarrow pick JPEG \rightarrow save to (enter file name)

Inference:

Stress-strain analysis (or stress analysis) is an engineering discipline covering methods to determine the stresses and strains in materials or structures which is having a hole at the center and subjected to forces or loads.

Result:

Thus the deformation shape and nodal stress diagram of Rectangular plate with circular hole is plotted using ANSYS software.

Date :

Stress analysis of an axi – symmetric component

Problem definition:

The model will be that of a closed tube made from steel. Point loads will be applied at the center of the top and bottom plate to make an analytical verification simple to calculate. A 3/4 cross section view of the tube is shown below. As warning, point loads will created is continuities in your model near the point of application. If you chose to use these types of loads in your own modeling, be very careful and be sure to understand the theory of how the FEA package is Appling the load and the assumption it is making. In this case, we will only be concerned about the stress distribution far from the point of application, so the discontinuities will have a negligible effect.

Aim:

To find out deformation shape and stress analysis of an axi-symmetric component using ANSYS software.

Steps :

1. Preferences	2. Element Type	3. Real Constants
4. Materials Props	5. Modeling	6. Meshing
7. Solution	8. General Post proc	
1. Preferences		

```
a. Main Menu \rightarrow Preferences \rightarrow Structural \rightarrow OK.
```

Deformed shape

2. Element Type

- a. Element Type \rightarrow Add/Edit/Delete \rightarrow Add... \rightarrow Pick Structural Solid \rightarrow Quad 8 node 82 \rightarrow OK
- b. Element Type \rightarrow Options \rightarrow Select the Axisymmetric \rightarrow OK

3. Real Constants

a. Real Constants \rightarrow Add/Edit/Delete>Add \rightarrow OK.

4. Materials Props

a. Material Props \rightarrow Material Models.... \rightarrow Structural, Linear, Elastic, and Isotropic \rightarrow Enter **EX**, = 2e5 , **PRXY = 0.3** Click **OK**.

5. Modeling

- a. Modeling \rightarrow Create \rightarrow Areas \rightarrow Rectangle \rightarrow By 2 corners \rightarrow X = 0 ,Y = 0, W = 20, H = 100 \rightarrow OK.
- b. Modeling \rightarrow Create \rightarrow Areas \rightarrow Rectangle \rightarrow By 2 corners \rightarrow X = 0 ,Y = 5, W = 15, H = 90 \rightarrow OK.
- c. Modeling \rightarrow Operate \rightarrow Booleans \rightarrow Subtract \rightarrow Areas \rightarrow pick First Rectangular area \rightarrow OK. \rightarrow pick Second Rectangular area \rightarrow OK.

6. Meshing

a. Mesh Tool \rightarrow set area \rightarrow pick Area \rightarrow OK \rightarrow Element Size $\rightarrow 2 \rightarrow$ OK.

b. Mesh Tool \rightarrow Mesh \rightarrow Free Mesh \rightarrow pick Area \rightarrow OK.

7. Solution

- a. Solution \rightarrow Define Loads \rightarrow Apply \rightarrow Structural \rightarrow Displacement \rightarrow Symmetry B.C. \rightarrow On Lines \rightarrow Rectangular Select left Top & Bottom edges \rightarrow OK.
- b. Utility Menu \rightarrow Select \rightarrow Entities \rightarrow By Location \rightarrow Y Co-ordinates \rightarrow 50 \rightarrow OK.
- c. Define Load \rightarrow Displacement \rightarrow on node \rightarrow Pick all \rightarrow UY \rightarrow Displacement Value = 0 \rightarrow OK.
- d. Utility Menu \rightarrow Select \rightarrow Entities \rightarrow By Location \rightarrow Select all \rightarrow Cancel.
- e. Define Load \rightarrow apply \rightarrow Structural \rightarrow Force Moment \rightarrow on Key point \rightarrow pick Left Top Corner \rightarrow enter the Value \rightarrow FY \rightarrow 100 \rightarrow OK \rightarrow pick the left bottom corner \rightarrow enter the Value \rightarrow FY \rightarrow -100 \rightarrow OK
- f. Solve \rightarrow Current L.S. \rightarrow OK \rightarrow Solution is done \rightarrow Close

8. General Post proc

- a. General Postproc \rightarrow List Result \rightarrow Nodal Solution \rightarrow Stress \rightarrow X component \rightarrow result copy word document past \rightarrow OK.
- b. General Postproc \rightarrow Plot Results \rightarrow Deformed Shape \rightarrow Select Def + undeformed and click **OK**.
- c. Utility Menu \rightarrow Plot Ctrls \rightarrow Hardcopy \rightarrow To file \rightarrow pick JPEG \rightarrow save to (enter file name)
- d. Utility Menu \rightarrow Plot Ctrls \rightarrow Animate \rightarrow Deformed Shape... \rightarrow Select Def + undeformed and click OK
- e. General Postproc \rightarrow Contour Plot \rightarrow Nodal Solution \rightarrow Stress \rightarrow Vonmises Stress \rightarrow OK
- f. Utility Menu \rightarrow Plot Ctrls \rightarrow Hardcopy \rightarrow To file \rightarrow pick JPEG \rightarrow save to (enter file name)

Inference:

With the help of modeling we can understand the use of axisymmetric component in engineering field (Eg: Boiler)

Using Stress-strain analysis (or stress analysis) is an engineering discipline covering methods to determine the stresses and strains in materials or structures subjected to forces or loads.

Result:

Thus the deformation shape and nodal stress diagram of an axisymmetric component is plotted using ANSYS software.

Ex No 6(a)

Date :

KLNCE

Conductive heat transfer analysis of 2D component

Problem Specification:

Rectangular plate of Breadth = 0.4 m, height = 0.6 m. The upper and bottom edge of the plate temperature is taken as 180° C. The right end of plate temperature is 190° .C. Thermal conductivity = 1.5 w/mk.

Aim:

To find the temperature distribution on given plate

1. Preferences

a. Main Menu \rightarrow Preferences \rightarrow Thermal \rightarrow OK.

2. Element Type

a. Element Type \rightarrow Add/Edit/Delete \rightarrow Add... \rightarrow Pick Solid \rightarrow Quad4node55

 \rightarrow OK

3. Materials Props

a. Material Props \rightarrow Material Models.... \rightarrow Thermal, Conductivity ,Isotropic \rightarrow **KXX**, = 1.5Click **OK**. Material \rightarrow Exit.

4. Modeling

```
a. Modeling \rightarrow Create \rightarrow Areas \rightarrow Rectangle \rightarrow By 2 Corner \rightarrow X = 0,Y = 0,Width =0.4, Height = 0.6 \rightarrow OK.
```

5. Meshing

a. Meshing \rightarrow Size Cntrls \rightarrow Manual Size \rightarrow Global \rightarrow Size \rightarrow 0.05 \rightarrow OK b. Mesh Tool \rightarrow Mesh \rightarrow Select Surface \rightarrow OK

6. Solution

- a.Solution \rightarrow Define Loads \rightarrow Apply \rightarrow Thermal \rightarrow Heat Generate \rightarrow On Lines \rightarrow Select the Left Side of Rectangular Pick \rightarrow OK \rightarrow Value : 0 \rightarrow OK.
- b.Solution \rightarrow Define Load \rightarrow apply \rightarrow Thermal \rightarrow Temperature \rightarrow Click the upper and bottom of the rectangular pick \rightarrow OK \rightarrow All DOF \rightarrow Value : 180° \rightarrow Right Side Pick \rightarrow Value = 190° C \rightarrow OK
- c.Solution \rightarrow Solve \rightarrow Current L.S. \rightarrow OK \rightarrow Solution is done \rightarrow Close

7. General Post proc

a.General Postproc \rightarrow Plot results \rightarrow Contour Plot \rightarrow Nodal Solu \rightarrow DOF Solution \rightarrow Nodal Temperature \rightarrow OK

Inference:

Thermal analysis is also often used as a term for the study of heat transfer through structures. Many of the basic engineering data for modeling such systems comes from measurements of heat capacity and thermal conductivity.

Result:

Thus the temperature distribution diagram is plotted using ANSYS software.

Ex No : 6(*b*)

Date :

Thermal analysis of 2D Plate (Conductive/Convective/Insulated)

Problem Definition

The Mixed Convection / Conduction / Insulated Boundary Conditions Example is constrained as shown in the following figure (Note that the section is assume to be in finitely long). Find the temperature distribution.

Aim:

To find the temperature distribution on the given plate using ANSYS software.

1.Preferences

```
a. Main Menu \rightarrow Preferences \rightarrow Thermal \rightarrow OK.
```

2. Element Type

```
a. Element Type \rightarrow Add/Edit/Delete \rightarrow Add... \rightarrow Pick Solid \rightarrow Quad4node55 \rightarrow OK
```

3. Materials Props

```
a.Material Props \rightarrow Material Models.... \rightarrow Thermal, Conductivity ,Isotropic \rightarrow KXX, = 10Click OK. Material \rightarrow Exit.
```

4. Modeling

```
a. Modeling \rightarrow Create \rightarrow Areas \rightarrow Rectangle \rightarrow By 2 Corner \rightarrow X = 0,Y = 0,Width =1, Height = 1 \rightarrow OK.
```

5. Meshing

- a. Meshing \rightarrow Size Controls \rightarrow Manual Size \rightarrow Global \rightarrow Size \rightarrow Area Controls \rightarrow length: 0.05 \rightarrow OK
- b. Mesh Tool \rightarrow Mesh \rightarrow Select Surface \rightarrow OK

6. Solution

- a. Solution \rightarrow Define Loads \rightarrow Apply \rightarrow Thermal \rightarrow On Lines \rightarrow Select the Top Edge Rectangular Pick \rightarrow OK \rightarrow All DOF, Value: 500 \rightarrow OK.
- b. Solution \rightarrow Define Loads \rightarrow Apply \rightarrow Thermal \rightarrow On Lines \rightarrow Select the left Edge Rectangular Pick \rightarrow OK \rightarrow All DOF, Value: 100 \rightarrow OK.
- c. Solution \rightarrow Define Load \rightarrow apply \rightarrow Convection \rightarrow on lines \rightarrow Select the Right Side Pick \rightarrow OK \rightarrow Film Coefficient : 10, Bulk Temperature : 100 \rightarrow OK.
- d. Solution \rightarrow Define Load \rightarrow apply \rightarrow Convection \rightarrow on lines \rightarrow Select the Bottom Side Pick \rightarrow OK \rightarrow Value:0,Value: 0 \rightarrow OK.
- e. Solution \rightarrow Solve \rightarrow Current L.S. \rightarrow OK \rightarrow Solution is done \rightarrow close

7. General Post proc

a. General Postproc \rightarrow Plot results \rightarrow Contour Plot \rightarrow Nodal Solu \rightarrow DOF Solution \rightarrow Nodal Temperature \rightarrow OK

Inference:

Thermal analysis is also often used as a term for the study of heat transfer through structures. Many of the basic engineering data for modeling such systems comes from measurements of heat capacity and thermal conductivity.

Result:

Thus the temperature distribution diagram is plotted using ANSYS software.

Date :

Thermal stress analysis of cylindrical shells

Problem Specification:

compute the temperature distribution in a long steel cylinder with inner radius 5 inches and outer radius 10 inches. The interior of the cylinder is kept at 75 deg F, and heat is lost on the exterior by convection to a fluid whose temperature is 40 deg F. The convection coefficient is 0.56 BTU/hr-sq.in-F and the thermal conductivity for steel is 0.69 BTU/hr-in-F.

EX = 3.E7 (psi) DENS = 7.36E-4 (lb sec^2/in^4) ALPHAX = 6.5E-6 PRXY = 0.3 KXX = 0.69 (BTU/hr-in-F)

Aim:

To find the temperature distribution on the given cylindrical shells using ANSYS software.

1.Preferences

```
a. Main Menu \rightarrow Preferences \rightarrow Thermal \rightarrow OK.
```

2. Element Type

a. Element Type \rightarrow Add/Edit/Delete \rightarrow Add... \rightarrow Thermal Solid \rightarrow solid 8 node 77 \rightarrow OK \rightarrow options \rightarrow elements behavior \rightarrow Axi symmetric \rightarrow OK

3. Materials Props

a. Material Props \rightarrow Material Models.... \rightarrow Thermal, Conductivity ,Isotropic \rightarrow **KXX**, = 0.69 Density \rightarrow 7.36e-4 \rightarrow OK \rightarrow

b. Favorites \rightarrow Linear static \rightarrow Linear isotropic \rightarrow EX=3e7 \rightarrow PRXY =0.3 \rightarrow Thermal expansion \rightarrow ALPHAX=6.5E-6 \rightarrow Click **OK**. Material \rightarrow Exit.

4. Modeling

a. Modeling \rightarrow Create \rightarrow Areas \rightarrow circle \rightarrow Partial Annulas \rightarrow X = 0,Y = 0 rad1 = 5 \rightarrow theta1 = 0 \rightarrow rad2=10 \rightarrow theta2 = 90 \rightarrow OK.

5. Meshing

a. Meshing \rightarrow Size Controls \rightarrow Manual Size \rightarrow Global \rightarrow Size \rightarrow Edge length =2 $\rightarrow \rightarrow OK$

b. Mesh Tool \rightarrow Mesh \rightarrow mapped \rightarrow Select Surface \rightarrow OK

6. Solution

- a. Solution \rightarrow Define Loads \rightarrow Apply \rightarrow Thermal \rightarrow on nodes \rightarrow Select inner circular nodes \rightarrow temperature =75 \rightarrow OK \rightarrow
- b. Solution \rightarrow Define Loads \rightarrow Apply \rightarrow Thermal \rightarrow convection \rightarrow On Lines \rightarrow Select outer circular line \rightarrow OK \rightarrow Film Coefficient : 0.56, Bulk Temperature : 40 \rightarrow OK.
- c. Solution \rightarrow Define Load \rightarrow apply \rightarrow Convection \rightarrow on lines \rightarrow Select vertical and horizontal line \rightarrow OK \rightarrow Film Coefficient : 0, Bulk Temperature : 0 \rightarrow OK.
- d. Solution \rightarrow Solve \rightarrow Current L.S. \rightarrow OK \rightarrow Solution is done \rightarrow close

7. General Post proc

a. General Postproc \rightarrow Plot results \rightarrow Contour Plot \rightarrow Nodal Solution \rightarrow DOF Solution \rightarrow Nodal Temperature \rightarrow OK

Inference:

Thermal analysis is also often used as a term for the study of heat transfer through structures. Many of the basic engineering data for modeling such systems comes from measurements of heat capacity and thermal conductivity.

Result:

Thus the temperature distribution diagram is plotted using ANSYS software.

Date :

KLNCE

Vibration analysis of spring mass system

Problem Specification:

Find the 2 mode frequency analysis of spring mass system

<u>Notes</u>: ANSYS has an option that will allow for the masses to be modeled as point masses. Using this option, no dimensions or material properties would be necessary for the masses. However, so that the mode shapes are easier to understand when they are animated, in this case, the masses will be modeled as blocks, 1 m x 1 m, with unit thickness. So, they have a volume of 1 m^3 . The densities will be specified to produce the correct masses. Also, the free lengths of the springs are irrelevant in this analysis, as only the stiffnesses matter. But, they will both be assumed to have a length of 5 m.

1. Preferences

a. Click \rightarrow Main Menu \rightarrow Preferences \rightarrow Click Structural \rightarrow Click OK.

2. Element Type

- a. Element Type \rightarrow Add / Edit / Delete \rightarrow Add \rightarrow Solid \rightarrow Quad 4 node 42
 - \rightarrow apply \rightarrow Combination \rightarrow Spring damper 14 \rightarrow OK

3. Real Constants

a. Real Constants \rightarrow select element 2 \rightarrow Add / Edit / Delete \rightarrow Add \rightarrow set no 1 \rightarrow K =5 \rightarrow OK \rightarrow Add \rightarrow for set no 2 \rightarrow K=20 \rightarrow OK

4. Materials Props

a. Preprocessor \rightarrow Materials Props \rightarrow Materials Models \rightarrow Structural \rightarrow Linear \rightarrow Elastic \rightarrow Isotropic \rightarrow Ex: 1 \rightarrow Prxy : 0.27 \rightarrow Ok \rightarrow density =2 \rightarrow material \rightarrow new model \rightarrow Structural \rightarrow Linear \rightarrow Elastic \rightarrow Isotropic \rightarrow Ex: 1 \rightarrow Prxy : 0.27 \rightarrow density =1 \rightarrow Ok Materials \rightarrow Exit

5. Modeling

a. Modeling \rightarrow Create \rightarrow Areas \rightarrow Rectangle \rightarrow by 2 corners \rightarrow enter X=5, Y=0, Width =1, Height =1 \rightarrow apply \rightarrow enter X=11, Y=0, Width =1, Height =1 \rightarrow OK

6. Meshing

- a. Meshing \rightarrow Size Cntrls \rightarrow Manual Size \rightarrow Global \rightarrow Size \rightarrow Enter NDIV=1 \rightarrow OK.
- b. Mesh Tool \rightarrow Mesh area \rightarrow mapped \rightarrow select left side area \rightarrow OK
- c. Modeling \rightarrow create \rightarrow element \rightarrow element attributes \rightarrow Material No.= 2
- d. Mesh Tool \rightarrow Mesh area \rightarrow mapped \rightarrow select right side area \rightarrow OK
- e. Plot controls \rightarrow Window controls \rightarrow window options \rightarrow triad \rightarrow not shown.
- f. Plot \rightarrow nodes.
- g. Modeling \rightarrow Create \rightarrow Nodes \rightarrow in active co systems \rightarrow Node no $9 \rightarrow OK$
- h. Modeling \rightarrow create \rightarrow element \rightarrow element attributes \rightarrow Element type 2 \rightarrow Material No.1 \rightarrow real constant no.1 \rightarrow OK
- i. Modeling → create → element →Auto numbered →through nodes→pick node 9 and1→OK
- j. Modeling \rightarrow create \rightarrow element \rightarrow element attributes \rightarrow Element type 2 \rightarrow Material No.1 \rightarrow real constant no.1 $\rightarrow \rightarrow$ OK
- k. Modeling \rightarrow create \rightarrow element \rightarrow Auto numbered \rightarrow through nodes \rightarrow pick node 2 and $5 \rightarrow OK$

7. Solution

- a. Solution \rightarrow Define Loads \rightarrow Apply \rightarrow Structural \rightarrow Displacement \rightarrow on nodes \rightarrow Select all nodes \rightarrow select UY and UZ \rightarrow OK
- b. On nodes \rightarrow select node 9 \rightarrow select all DOF \rightarrow OK
- c. Preprocessor \rightarrow coupling/ceqn \rightarrow couple DOFS \rightarrow select nodes1, 2, 3, 4 \rightarrow set UX NSET = 1 \rightarrow OK

- d. Couple DOFS \rightarrow select nodes 5,6,7,8 \rightarrow set UX NSET =2 \rightarrow OK Ansys Type \rightarrow New Ansys \rightarrow Modal \rightarrow OK
- e. Ansys Options \rightarrow PCG Lanczous \rightarrow No. of Modes to extract 2 \rightarrow Expand 2 \rightarrow OK \rightarrow OK.
- f. Solve \rightarrow current L.S \rightarrow OK.

8. General Post proc

- a. General Post proc \rightarrow Results Summery \rightarrow the result copy Word past \rightarrow OK.
- b.Read Result \rightarrow Select First Set \rightarrow Plot Result \rightarrow Deformed Shape \rightarrow Click Def+ undeformed \rightarrow OK
- c.Plot Ctrls \rightarrow Hard copy \rightarrow to file JPG \rightarrow OK
- d.Read Result \rightarrow Select Last Set \rightarrow Plot Result \rightarrow Deformed Shape \rightarrow Click Def+ undeformed \rightarrow OK
- e.Plot Ctrls \rightarrow Hard copy \rightarrow to file JPG \rightarrow OK
- f. Plot Ctrls \rightarrow Animate \rightarrow Deformed Shape \rightarrow Click Def + Undeformed \rightarrow OK.

Inference:

Model analysis is used for finding the mode of natural frequency of a given member.

We can understand that the frequency of vibration depends on mass, geometry value and stiffness of that element.

Result:

Thus we plotted the 2 mode frequency analysis of Spring Mass system using ANSYS software.

Ex No : 9(a)

Date :

Problem Specification:

Modulus of Elasticity (E) = $206800(10^6)$ N/m² Density = 7830 kg/m³

Find the 5 mode shape analysis of given Cantilever Beam.

 $E = 206800e6 \text{ N/m}^2 \qquad \nu = 0.27 \qquad \text{Izz} = 8.33e-10 \text{ m}^4$ Density $\sigma = 7830 \text{ kg/m}^3 \qquad a = 0.01 \text{m} \quad b = 0.01 \text{m}$ Area = 0.0001m²

Aim:

To find 5 mode frequency analysis of Cantilever Beam using ANSYS software.

1.Preferences

a. Click \rightarrow Main Menu \rightarrow Preferences \rightarrow Click Structural \rightarrow Click OK.

2. Element Type

b.Element Type \rightarrow Add / Edit / Delete \rightarrow Add \rightarrow Beam \rightarrow 2D Elastic 3 \rightarrow OK

3. Real Constants

a. Real Constants \rightarrow Add / Edit / Delete \rightarrow Add \rightarrow OK

b. Enter \rightarrow Area = 0.0001 ,Izz = 8.33e⁻¹⁰ , Height = 0.01 \rightarrow Click OK.

4. Materials Props

a. Preprocessor \rightarrow Materials Props \rightarrow Materials Models \rightarrow Structural \rightarrow Linear \rightarrow Elastic \rightarrow Isotropic \rightarrow Ex: 206800e⁶ \rightarrow Prxy: 0.27 \rightarrow Ok

- b. Density \rightarrow 7830 \rightarrow OK.
- c. Materials \rightarrow Exit

5. Modeling

a. Modeling \rightarrow Create \rightarrow Key points \rightarrow In active CS \rightarrow Select Key point.

b.1 \rightarrow 0,0,0 2 \rightarrow 1,0,0

c. Lines \rightarrow Lines \rightarrow Straight Lines \rightarrow Select Key point 1,2 \rightarrow Click OK.

6. Meshing

- a.Meshing \rightarrow Size Cntrls \rightarrow Manual Size \rightarrow Global \rightarrow Size \rightarrow Enter the Element Division $\rightarrow 25 \rightarrow OK$.
- b. Mesh Tool \rightarrow Mesh \rightarrow (Select the line) \rightarrow OK
- c.Plot Cltrs (Main Menu) \rightarrow Style \rightarrow Size and shape \rightarrow Display of Element (ON).

7. Solution

- a.Ansys Type \rightarrow New Ansys \rightarrow Model \rightarrow OK
- b. Ansys Options \rightarrow PCG Lanczous \rightarrow No. of Modes to extract 5 \rightarrow Expand 5 \rightarrow OK \rightarrow OK.
- c.Solution \rightarrow Define Loads \rightarrow Apply \rightarrow Structural \rightarrow Displacement \rightarrow on Key Points \rightarrow Select key Points 1 \rightarrow Left Side Click OK \rightarrow Select All DOF Constrained.
- d. Solution \rightarrow Solve \rightarrow Current LS \rightarrow OK.

8. General Post proc

- a.General Post proc \rightarrow Results Summery \rightarrow the result copy Word past \rightarrow OK.
- b. Read Result \rightarrow Select First Set \rightarrow Plot Result \rightarrow Deformed Shape \rightarrow Click Def+undeformed \rightarrow OK
- c.Plot Ctrls \rightarrow Hard copy \rightarrow to file JPG \rightarrow OK
- d. Read Result \rightarrow Select Next Set \rightarrow Plot Result \rightarrow Deformed Shape \rightarrow Click Def+undeformed \rightarrow OK
- e.Plot Ctrls \rightarrow Hard copy \rightarrow to file JPG \rightarrow OK
- f. Read Result \rightarrow Select Next Set \rightarrow Plot Result \rightarrow Deformed Shape \rightarrow Click Def+undeformed \rightarrow OK
- g. Plot Ctrls \rightarrow Hard copy \rightarrow to file JPG \rightarrow OK
- h. Read Result \rightarrow Select Next Set \rightarrow Plot Result \rightarrow Deformed Shape \rightarrow Click Def+undeformed \rightarrow OK
- i. Plot Ctrls \rightarrow Hard copy \rightarrow to file JPG \rightarrow OK
- j. Read Result \rightarrow Select Next Set \rightarrow Plot Result \rightarrow Deformed Shape \rightarrow Click Def+undeformed \rightarrow OK
- k. Plot Ctrls \rightarrow Hard copy \rightarrow to file JPG \rightarrow OK
- 1. Plot Ctrls \rightarrow Animate \rightarrow Deformed Shape \rightarrow Click Def + Undeformed \rightarrow OK.

Inference:

Model analysis is used for finding the mode of natural frequency of a given member.

We can understand that the frequency of vibration depends on mass, geometry value and stiffness of that element.

Result:

Thus we plotted the 5 mode shape analysis of Cantilever Beam using ANSYS software.

KLNCE

Ex No : 9 (b)

Date :

Model Analysis of Simply Supported Beam

Problem Specification:

Modulus of Elasticity (E) = $206800(10^6)$ N/m²

Density = 7830 kg/m³

 $E = 206800e6 \text{ N/m}^2 \quad v = 0.27 \quad \text{Izz} = 8.33e-10$ Density $\sigma = 7830 \text{ kg/m}^3 \quad a = 0.01m$ $b = 0.01m \quad \text{Area} = 0.0001m^2$

Aim:

To find 5 mode frequency analysis of simply supported beam using ANSYS software.

1. Preferences

a. Click \rightarrow Main Menu \rightarrow Preferences \rightarrow Click Structural \rightarrow Click OK.

2. Element Type

a. Element Type \rightarrow Add / Edit / Delete \rightarrow Add \rightarrow Beam \rightarrow 2D Elastic 3 \rightarrow OK

3. Real Constants

a. Real Constants \rightarrow Add / Edit / Delete \rightarrow Add \rightarrow OK

b. Enter \rightarrow Area = 0.0001m ,Izz = 8.33e⁻¹⁰m⁴ , Height = 0.01m \rightarrow Click OK.

4. Materials Props

a.Preprocessor \rightarrow Materials Props \rightarrow Materials Models \rightarrow Structural \rightarrow Linear

 \rightarrow Elastic \rightarrow Isotropic \rightarrow Ex: 206800e⁶ \rightarrow Prxy : 0.27 \rightarrow Ok

b. Density \rightarrow 7830 \rightarrow OK.

c.Materials \rightarrow Exit

5. Modeling

a. Modeling \rightarrow Create \rightarrow Key points \rightarrow In active CS \rightarrow Select Key point.

b.1 \rightarrow 0,0,0 2 \rightarrow 1,0,0

c. Lines \rightarrow Lines \rightarrow Straight Lines \rightarrow Select Key point 1,2 \rightarrow Click OK.

6. Meshing

- a. Meshing \rightarrow Size Cntrls \rightarrow Manual Size \rightarrow Global \rightarrow Size \rightarrow Enter the Element Division $\rightarrow 25 \rightarrow OK$.
- b. Mesh Tool \rightarrow Mesh \rightarrow (Select the line) \rightarrow OK
- c. Plot Cltrs (Main Menu) \rightarrow Style \rightarrow Size and shape \rightarrow Display of Element (ON).

7. Solution

- a. Ansys Type \rightarrow New Ansys \rightarrow Model \rightarrow OK
- b. Ansys Options \rightarrow PCG Lanczous \rightarrow No. of Modes to extract 5 \rightarrow Expant 5 \rightarrow OK \rightarrow OK.
- c. Solution → Define Loads → Apply → Structural → Displacement → on Key
 Points → Select key Points 1 → Left Side & 2 → Right Side Click OK → Select
 UX,UY Constrained.
- d. Solution \rightarrow Solve \rightarrow Current LS \rightarrow OK.

8. General Post proc

- a. General Post proc \rightarrow Results Summery \rightarrow the result copy Word past \rightarrow OK.
- b.Read Result \rightarrow Select First Set \rightarrow Plot Result \rightarrow Deformed Shape \rightarrow Click Def+undeformed \rightarrow OK
- c. Plot Ctrls \rightarrow Hard copy \rightarrow to file JPG \rightarrow OK
- d. Read Result \rightarrow Select Next Set \rightarrow Plot Result \rightarrow Deformed Shape \rightarrow Click Def+undeformed \rightarrow OK
- e. Plot Ctrls \rightarrow Hard copy \rightarrow to file JPG \rightarrow OK
- f. Read Result \rightarrow Select Next Set \rightarrow Plot Result \rightarrow Deformed Shape \rightarrow Click Def+undeformed \rightarrow OK
- g. Plot Ctrls \rightarrow Hard copy \rightarrow to file JPG \rightarrow OK
- h. Read Result \rightarrow Select Next Set \rightarrow Plot Result \rightarrow Deformed Shape \rightarrow Click Def+undeformed \rightarrow OK
- i. Plot Ctrls \rightarrow Hard copy \rightarrow to file JPG \rightarrow OK
- j. Read Result \rightarrow Select Next Set \rightarrow Plot Result \rightarrow Deformed Shape \rightarrow Click Def-undeformed \rightarrow OK
- k. Plot Ctrls \rightarrow Hard copy \rightarrow to file JPG \rightarrow OK
- 1. Plot Ctrls \rightarrow Animate \rightarrow Deformed Shape \rightarrow Click Def + Undeformed \rightarrow OK.

Inference:

Model analysis is used for finding the mode of natural frequency of a given member.

We can understand that the frequency of vibration depends on mass, geometry value and stiffness of that element.

Result:

Thus we plotted the 5 mode frequency analysis of simply supported Beam using ANSYS software.

Ex No : 9(*c*)

Date :

Model Analysis of Fixed End Beam

Problem Specification:

Find the 5 mode frequency analysis of Fixed End Beam

	E	=	206800e6 N/m ²	ν	=	0.27	Izz	=	8.33e-10
Density	σ	=	7830 kg/m ³	а	=	0.01m			
	b	=	0.01m	Area	=	0.0001m^2			

Aim:

To find 5 mode frequency analysis of Fixed End Beam using ANSYS software.

1. Preferences

a. Click \rightarrow Main Menu \rightarrow Preferences \rightarrow Click Structural \rightarrow Click OK.

2. Element Type

a. Element Type \rightarrow Add / Edit / Delete \rightarrow Add \rightarrow Beam \rightarrow 2D Elastic 3 \rightarrow OK

3. Real Constants

a. Real Constants \rightarrow Add / Edit / Delete \rightarrow Add \rightarrow OK

b. Enter \rightarrow Area = 0.0001 ,Izz = 8.33e⁻¹⁰ , Height = 0.01 \rightarrow Click OK.

4. Materials Props

- a. Preprocessor \rightarrow Materials Props \rightarrow Materials Models \rightarrow Structural \rightarrow Linear \rightarrow Elastic \rightarrow Isotropic \rightarrow Ex: 206800e6 \rightarrow Prxy: 0.27 \rightarrow Ok
- b. Density \rightarrow 7830 \rightarrow OK.
- c. Materials \rightarrow Exit

5. Modeling

- b. Modeling \rightarrow Create \rightarrow Key points \rightarrow In active CS \rightarrow Select Key point.
- c. 1 \rightarrow 0,0,0 2 \rightarrow 1,0,0

d.Lines \rightarrow Lines \rightarrow Straight Lines \rightarrow Select Key point 1,2 \rightarrow Click OK.

6. Meshing

1. Meshing \rightarrow Size Cntrls \rightarrow Manual Size \rightarrow Global \rightarrow Size \rightarrow Enter the Element Division \rightarrow 25 \rightarrow OK.

m.Mesh Tool \rightarrow Mesh \rightarrow (Select the line) \rightarrow OK

n. Plot Cltrs (Main Menu) \rightarrow Style \rightarrow Size and shape \rightarrow Display of Element (ON).

7. Solution

- a. Ansys Type \rightarrow New Ansys \rightarrow Model \rightarrow OK
- b. Ansys Options \rightarrow PCG Lanczous \rightarrow No. of Modes to extract 5 \rightarrow Expant 5 \rightarrow OK \rightarrow OK.
- c. Solution \rightarrow Define Loads \rightarrow Apply \rightarrow Structural \rightarrow Displacement \rightarrow on Key Points \rightarrow Select key Points 1 \rightarrow Left Side & 2 \rightarrow Right Side Click OK \rightarrow Select All DOF Constrained.
- d. Solution \rightarrow Solve \rightarrow Current LS \rightarrow OK.

8. General Post proc

- a. General Post proc \rightarrow Results Summery \rightarrow the result copy Word past \rightarrow OK.
- b.Read Result \rightarrow Select First Set \rightarrow Plot Result \rightarrow Deformed Shape \rightarrow Click Def+undeformed \rightarrow OK
- c.Plot Ctrls \rightarrow Hard copy \rightarrow to file JPG \rightarrow OK
- d.Read Result \rightarrow Select Next Set \rightarrow Plot Result \rightarrow Deformed Shape \rightarrow Click Def+undeformed \rightarrow OK
- e.Plot Ctrls \rightarrow Hard copy \rightarrow to file JPG \rightarrow OK
- f. Read Result \rightarrow Select Next Set \rightarrow Plot Result \rightarrow Deformed Shape \rightarrow Click Def+undeformed \rightarrow OK
- g.Plot Ctrls \rightarrow Hard copy \rightarrow to file JPG \rightarrow OK
- h. Read Result \rightarrow Select Next Set \rightarrow Plot Result \rightarrow Deformed Shape \rightarrow Click Def+ undeformed \rightarrow OK
- i. Plot Ctrls \rightarrow Hard copy \rightarrow to file JPG \rightarrow OK
- j. Read Result \rightarrow Select Next Set \rightarrow Plot Resutl \rightarrow Deformed Shape \rightarrow Click Def+undeformed \rightarrow OK
- k.Plot Ctrls \rightarrow Hard copy \rightarrow to file JPG \rightarrow OK
- l. Plot Ctrls \rightarrow Animate \rightarrow Deformed Shape \rightarrow Click Def + Undeformed \rightarrow OK.

Inference:

Model analysis is used for finding the mode of natural frequency of a given member.

We can understand that the frequency of vibration depends on mass, geometry value and stiffness of that element.

Result:

Thus we plotted the 5 mode frequency analysis of Fixed End Beam using ANSYS software.

Ex No : 10

Date :

Harmonic Analysis Of Cantilever Beam

Problem Specification:

We will now conduct a harmonic forced response test by applying a cyclic load (harmonic) at the end of the beam. The frequency of the load will be varied from 1-100Hz.The figure below depicts the beam with the application of the load.

Aim:

To find the harmonic analysis of Cantilever Beam using ANSYS software.

Procedure:

1. Preferences

a. Click \rightarrow Main Menu \rightarrow Preferences \rightarrow Click Structural \rightarrow Click OK.

2. Materials Props

a. Preprocessor \rightarrow Materials Props \rightarrow Materials Models \rightarrow Structural \rightarrow Linear

 \rightarrow Elastic \rightarrow Isotropic \rightarrow Ex: 206800e6 \rightarrow Prxy: 0.27 \rightarrow Ok

- b. Density \rightarrow 7830 \rightarrow OK.
- c. Materials \rightarrow Exit

3. Element Type

a. Element Type \rightarrow Add / Edit / Delete \rightarrow Add \rightarrow Beam \rightarrow 2D Elastic 3 \rightarrow OK

4. Real Constants

a. Real Constants \rightarrow Add / Edit / Delete \rightarrow Add \rightarrow OK

b. Enter \rightarrow Area = 0.0001 m², Izz = 833e-12, Height = 0.01 m \rightarrow Click OK.

***** ANSYS POS	ST26 VARIABL	E LISTING *****
TIM	E 21	JY
	UY_2	
AMPL	ITUDE PH	ASE
1.0000	0.196269	0.00000
2.0000	0.205086	0.00000
3.0000	0.221743	0.00000
4.0000	0.250351	0.00000
5.0000	0.300534	0.00000
6.0000	0.399155	0.00000
7.0000	0.656309	0.00000
8.0000	2.65172	0.00000
9.0000	1.06273	180.000
10.000	0.410080	180.000
11.000	0.242418	180.000
12.000	0.166333	180.000
13.000	0.123260	180.000
14.000	0.957484E-01	180.000
15.000	0.767763E-01	180.000
16.000	0.629764E-01	180.000
17.000	0.525351E-01	180.000
18.000	0.443899E-01	180.000
19.000	0.378782E-01	180.000

***** ANSYS POST26 VARIABLE LISTING *****

5. Modeling

- a. Modeling \rightarrow Create \rightarrow Key points \rightarrow In active CS \rightarrow Select Key point.
- $b.1 \rightarrow 0, 0, 0$ $2 \rightarrow 1, 0, 0$
- c. Lines \rightarrow Lines \rightarrow Straight Lines \rightarrow Select Key point 1, 2 \rightarrow Click OK.

6. Meshing

- a. Mesh Tool \rightarrow Set line \rightarrow Enter the Element Division \rightarrow 25 \rightarrow OK.
- b. Mesh Tool \rightarrow Mesh \rightarrow (Select the line) \rightarrow OK

7. Solution

a.Solution \rightarrow Analysis Type \rightarrow New Analysis \rightarrow Harmonic ANTYPE, $3 \rightarrow$ OK.

b. Solution \rightarrow Analysis Type \rightarrow Analysis Options. \rightarrow OK \rightarrow OK

- c.Solution \rightarrow Define Loads \rightarrow Apply \rightarrow Structural \rightarrow Displacement \rightarrow on key point \rightarrow Click Left Side keypoint \rightarrow OK \rightarrow Select All DOF Constrained \rightarrow OK.
- d. Select Solution \rightarrow Define Loads \rightarrow Apply \rightarrow Structural \rightarrow Force/Moment \rightarrow on key point \rightarrow Click Right Side key Point \rightarrow OK \rightarrow Direction of Force – FY \rightarrow Real Part of Force \rightarrow 100 ; Image Part of Force – 0 \rightarrow OK
- e.Solution \rightarrow Load Step Opts \rightarrow Time/Frequency \rightarrow Freq and Substps... \rightarrow Harmonice Freq Range – 0 – 100; Number of Sub step – 100 \rightarrow Select the Stepped \rightarrow OK.

f. Solution \rightarrow Solve \rightarrow Current LS SOLVE \rightarrow Solution done.

8. TimeHistPostpro

a. SelectTimeHistPostpro \rightarrow Click Add Data \rightarrow Click DOF Solution \rightarrow Click Y – Component of displacement \rightarrow OK \rightarrow Cantilever Beam Right Side Point Click \rightarrow OK

b. Select the List Data \rightarrow Data List \rightarrow Close

- c. Graph Data \rightarrow Displace Hard Copy \rightarrow to file JPG \rightarrow OK
- d. UtilityMenu → PlotCtrls → Style → Graphs → ModifyAxis → Select the LOGY Y – axis Scale = Linear Change the Logarithmic → OK
- e. UtilityMenu>Plot>Replot

Inference:

Harmonic analysis is used for finding the mode of natural frequency of a given member in dynamic and/ or for dynamic loading condition.

We can understand that the frequency of vibration depends on mass, geometry value and stiffness of that element.

Result:

Thus the harmonic analysis is conducted on cantilever beam using ANSYS software and the results are plotted.

Ex No :

Date :

KLNCE

Non-Linear Analysis Using Contact Element

Problem:

A set of punch and die with dimensions is as shown in the figure. The thickness for both punch and die is 0.1 mm. A force of 2000 N is applied at top of the punch. Analyze the stress distribution in punch as well die using contact elements.

GUI Solution:

1. Starting:

Click \rightarrow start \rightarrow ANSYS \rightarrow ANSYS product launcher

Launch →ANSYS Multiphysics

File management \rightarrow browse the directory for saving and retrieving the files. Click \rightarrow run

2. Preferences \rightarrow tick \rightarrow structural \rightarrow select h-method \rightarrow ok

Title:

Utility menu \rightarrow File \rightarrow Change title \rightarrow "Machine part" ok.

Utility menu $\rightarrow ->$ plot $\rightarrow >$ replot

4. Elements:

Main menu \rightarrow Preprocessor \rightarrow element type \rightarrow add \rightarrow add \rightarrow Structural \rightarrow Solid \rightarrow quad 4node (PLANE42) \rightarrow ok

Set options \rightarrow pane stress with thickness \rightarrow ok

Main menu \rightarrow Preprocessor \rightarrow element type \rightarrow add \rightarrow add \rightarrow Contact \rightarrow 2D target (TARGE

169) \rightarrow apply \rightarrow 2 nd surf 171 (CONTA171) \rightarrow ok

5. <u>Real Constant:</u> (Contact material only needs Real Constants)

(Punch is contact Die is Target)

Main menu \rightarrow Preprocessor \rightarrow real constant \rightarrow add \rightarrow Type 1 \rightarrow ok \rightarrow enter thickness as 0.1 \rightarrow ok

 \rightarrow add \rightarrow Type 2 \rightarrow ok \rightarrow enter RI = 0.01 & R2 = 0.01 \rightarrow ok

 \rightarrow add \rightarrow Type 3 \rightarrow ok \rightarrow enter RI = 0.01 & R2 = 0.01 \rightarrow ok \rightarrow close

6. Material Properties:

(Main material only needs material properties)

```
Main menu \rightarrow Preprocessor \rightarrow Material prop \rightarrow Material models \rightarrow Material model no 1 \rightarrow
```

```
Structural \rightarrow Linear -» Elastic -> isotropic -> -> enter EX = 2.0e+05; NUXY = 0.3 -> ok.
```

7.Modeling:

Main menu \rightarrow Preprocessor \rightarrow create \rightarrow keypoints \rightarrow in active CS \rightarrow

enter KPI = (0,0), KP2 = (30,0),KP3 = (30, 25),KP4 = (20, 25),KP5 = (10, 25),KP6 = (0, 25),KP7 = (10, 25.01),KP8 = (20, 25.01),KP9 = (20,75), $KP10 = (10,75) \rightarrow ok$ Main menu \rightarrow Preprocessor \rightarrow create \rightarrow lines \rightarrow st. lines \rightarrow select KPI & KP2 \rightarrow apply \rightarrow select KP2 & KP3 \rightarrow apply \rightarrow select KP3 & KP4 \rightarrow apply \rightarrow select KP4 & KP5 \rightarrow apply \rightarrow select KP5 & KP6 \rightarrow apply \rightarrow select KP6 & KPI \rightarrow apply \rightarrow select KP7 & KP8 \rightarrow apply \rightarrow select KP8 & KP9 \rightarrow apply \rightarrow select KP9 & KP10 \rightarrow apply \rightarrow select KP10 & KP7 \rightarrow ok

Utility menu \rightarrow plotctrls \rightarrow numbering \rightarrow line no \rightarrow on Utility menu \rightarrow plot \rightarrow lines Main menu \rightarrow Preprocessor \rightarrow modeling create \rightarrow areas \rightarrow arbitrary \rightarrow by lines \rightarrow pick LI, L2, L3, L4, L5, L6 \rightarrow apply \rightarrow pick L7, L8, L9, L10 \rightarrow ok. Utility menu \rightarrow plotctrls \rightarrow numbering \rightarrow line no \rightarrow on Utility menu \rightarrow select \rightarrow everything Utility menu \rightarrow plot \rightarrow area Main menu \rightarrow Preprocessor \rightarrow meshtool \rightarrow set \rightarrow lines \rightarrow select L3, L4, L7, L5, L9 \rightarrow apply \rightarrow enter no. of division = $8 \rightarrow apply$ select LI, L2, L6 \rightarrow apply \rightarrow enter no. of division = 10 \rightarrow apply select L8, L10 \rightarrow apply \rightarrow enter no. of division = 15 \rightarrow apply \rightarrow ok Main menu \rightarrow Preprocessor \rightarrow meshtool \rightarrow mesh \rightarrow area \rightarrow pickall \rightarrow ok. 8. Creating Contact Elements: Utility menu \rightarrow select \rightarrow entities \rightarrow lines \rightarrow by num/pick \rightarrow apply \rightarrow select L7 (bottom line of the punch) \rightarrow apply \rightarrow ok Utility menu \rightarrow select \rightarrow entities \rightarrow nodes \rightarrow attached to \rightarrow lines, all \rightarrow apply \rightarrow > ok Utility menu \rightarrow Utility menu \rightarrow plot \rightarrow nodes Main menu \rightarrow Preprocessor \rightarrow modeling \rightarrow create \rightarrow elements \rightarrow elements attributes select type 2; mat no 1; real constant set no $2 \rightarrow ok$ Main menu \rightarrow Preprocessor \rightarrow modeling \rightarrow create \rightarrow elements \rightarrow Auto numbered \rightarrow through nodes \rightarrow pick adjacent two nodes at time \rightarrow apply Utility menu \rightarrow select \rightarrow entities \rightarrow lines \rightarrow by num/pick \rightarrow apply \rightarrow select L4 (line on die

below bottom line of the punch) \rightarrow apply \rightarrow ok.

Utility menu \rightarrow select \rightarrow entities \rightarrow nodes \rightarrow attached to \rightarrow lines, all \rightarrow apply \rightarrow ok

Utility menu \rightarrow plot \rightarrow nodes

KLNCE

Main menu \rightarrow Preprocessor \rightarrow modeling \rightarrow create \rightarrow elements \rightarrow elements attributes \rightarrow select element type 3 ; mat no 1 ; real constant set no 3 \rightarrow ok.

Main menu \rightarrow Preprocessor \rightarrow modeling \rightarrow create \rightarrow elements \rightarrow Auto numbered \rightarrow through nodes \rightarrow pick adjacent two nodes at time \rightarrow apply

Utility menu \rightarrow select \rightarrow everything

Utility menu \rightarrow plot multiplot

Utility menu \rightarrow select \rightarrow entities \rightarrow lines \rightarrow by num/pick \rightarrow apply \rightarrow select L7 & L4 together \rightarrow apply \rightarrow ok.

Utility menu \rightarrow select \rightarrow entities \rightarrow nodes \rightarrow attached to \rightarrow lines, all \rightarrow apply \rightarrow ok

Utility menu plot \rightarrow nodes

Preprocessor \rightarrow Coupling/Ceqn \rightarrow Couple DOF \rightarrow pickall \rightarrow set reference no 1 and select Uy \rightarrow ok (Contact Manag we can add friction)

Utility menu \rightarrow select \rightarrow everything

Utility menu \rightarrow plot \rightarrow multiplot

9. Boundary Conditions:

Utility menu \rightarrow select \rightarrow entities \rightarrow lines \rightarrow by num/pick \rightarrow apply \rightarrow select bottom most line \rightarrow apply \rightarrow ok.

Utility menu \rightarrow select \rightarrow entities \rightarrow nodes \rightarrow attached to \rightarrow lines, all \rightarrow apply \rightarrow ok

Utility menu \rightarrow plot \rightarrow nodes

```
Main menu \rightarrow Solution \rightarrow loads \rightarrow apply \rightarrow displacement \rightarrow on nodes \rightarrow select pickall \rightarrow ok \rightarrow select all DOF ok.
```

select un DOI ok.

Utility menu \rightarrow Select \rightarrow everything

Utility menu \rightarrow plot \rightarrow multiplot

Main menu \rightarrow Solution \rightarrow loads \rightarrow apply \rightarrow force \rightarrow on nodes \rightarrow select last but one node

from right on the top of the punch \rightarrow ok \rightarrow enter Fy = -2000 \rightarrow ok

10. Non Linear Settings:

Main menu \rightarrow solution \rightarrow analysis type \rightarrow new analysis \rightarrow transient \rightarrow full \rightarrow ok

Main menu \rightarrow solution \rightarrow analysis type \rightarrow solun contrl \rightarrow basic \rightarrow

Analysis option \rightarrow large displacement transient

Time control:

Time at the end of load step $\rightarrow 1$ Automatic time stepping \rightarrow on

Time increment \rightarrow enter 0.01, 0.001, 0.25

Write items to result file \rightarrow All solution items

Frequency \rightarrow for every substep

Main menu \rightarrow solution analysis type \rightarrow solun contrl \rightarrow Non-Linear \rightarrow equilibrium iterations = 25.

Main menu \rightarrow Solution \rightarrow solve \rightarrow current LS

11. Post Processing:

Gen. post processor \rightarrow plot results nodal solutions \rightarrow stress \rightarrow von-mises \rightarrow ok

Ex No :

Date :

3D Static Analysis of a Pulley (Applying Angular Velocity and Torque) Applying Torque by Mass Element

Problem:

A pulley is rotating at 1000 rpm and require to transmit power of 5 kW. The dimensions of the pulley are shown in the figure. The material properties are young's modulus is 210 GPa (2.1X103 N/mm2) and Poisson's ratio is 0.3 and density is 7800 kg/m3. Analyze for the vonmises stress.

GUI Solution:

1. Starting:

Click \rightarrow start \rightarrow ANSYS \rightarrow ANSYS product launcher

Launch → ANSYS Multiphysics

File management \rightarrow browse the directory for saving and retrieving the files. Click \rightarrow run

2. Preferences \rightarrow tick \rightarrow structural \rightarrow select h-method \rightarrow ok

Title:

Utility menu \rightarrow File \rightarrow Change title \rightarrow "Machine part" \rightarrow ok.

Utility menu \rightarrow plot replo

3. Elements:

Preprocessor \rightarrow element type \rightarrow add \rightarrow add \rightarrow structural solid \rightarrow qudra 8 noded (PLANE42)

 \rightarrow apply \rightarrow add \rightarrow brick with rotate (SOLID73) (not available in ANSYS v9 directly) \rightarrow

apply \rightarrow add \rightarrow 3D mass (MASS21) \rightarrow apply

3.Real Constants:

Preprocessor \rightarrow real const \rightarrow add \rightarrow Qdd \rightarrow select MASS 21 \rightarrow ok \rightarrow enter set no = 3,

MASSX = 0.0001,

MASSY = 0.0001, MASSZ = 0.0001,

IXX = 0.0001,

IYY = 0.0001,

 $IZZ = 0.0001 \rightarrow ok$

6. Material Properties:

Preprocessor \rightarrow material prop \rightarrow constant \rightarrow isotropic \rightarrow enter the material no as $1 \rightarrow ok \rightarrow$ enter the following values:

EX = 2.1e+05;

NUXY = $0.3 \rightarrow DENS = 7800e-09 \rightarrow ok$

7. Modeling:

Material ID2;

Ex = 1;

NUXY =0.3;

DENS 0.0001-> ok

a. Main menu \rightarrow Preprocessor \rightarrow Modeling \rightarrow create \rightarrow keypoints \rightarrow in active CS \rightarrow Enter

$$KPI = (0,0),$$

$$KP2 = (100,0),$$

$$KP3 = (0,7.5),$$

$$KP4 = (0,20),$$

$$KP5 = (20,20),$$

$$KP6 = (20,30),$$

$$KP7 = (50,42.5),$$

$$KP8 = (50,52.5),$$

$$KP9 = (100,52.5),$$

KP9 = (100, 52.5),

KP10 = (100, 7.5) → C ok.

- b. Main menu → Preprocessor → Modeling → create → lines → st. lines → pick the keypoints by sequence from KP3 to KP10 → ok.
- c. Main menu → Preprocessor → Modeling → create → areas → arbitrary → pick all the lines → ok.

- d. Main menu → Preprocessor → meshtool → size cntrl → manual size → size → enter
 SIZE = 2 → ok.
- e. Main menu \rightarrow Preprocessor \rightarrow attributes \rightarrow define \rightarrow default attributes \rightarrow set Element type $\rightarrow 1$, Mat. ID $\rightarrow 1 \rightarrow ok$.
- f. Main menu \rightarrow Preprocessor \rightarrow Mesh tool \rightarrow mesh \rightarrow area \rightarrow pick all \rightarrow ok. NO' visions
- g. Main menu \rightarrow Preprocessor \rightarrow meshtool \rightarrow set global \rightarrow No. of divisions = 8 \rightarrow ok.
- h. Main menu \rightarrow Preprocessor \rightarrow attributes \rightarrow define \rightarrow default attributes \rightarrow set Element type \rightarrow 2, SOLID73, Mat. ID \rightarrow 1 ok.
- Main menu → Preprocessor → Modeling → operate → extrude → area → about axis → pick all → enter the key points on the axis about which it is revolved 360, 4 3D object will be created.
- j. Main menu \rightarrow Preprocessor \rightarrow attributes \rightarrow define \rightarrow default attributes \rightarrow set Element type \rightarrow 1 Mat. ID \rightarrow 1 \rightarrow ok
- k. Utility menu \rightarrow select \rightarrow elements \rightarrow by attributes \rightarrow Elem num type \rightarrow enter min, max = 1 \rightarrow from, full \rightarrow apply \rightarrow ok.
- 1. Utility menu \rightarrow plot \rightarrow elements
- m. Main menu → Preprocessor → Meshtool → select areas → clear → Select area
 corresponding 2D element → ok
- n. Main menu → Preprocessor → Modeling → create → nodes → in active CS → enter node no as 50000 (more than the maximum number of node) and x = 100, y = 0, z = 0 → ok
- o. Main menu → Preprocessor → modeling → create → element → element attributes → set element as 3, Mat ID as 1, Real cont as 1 → ok
- p. Main menu \rightarrow create \rightarrow element \rightarrow through \rightarrow auto numbered \rightarrow through nodes \rightarrow pick 50000th node \rightarrow ok.

8. Application of Boundary conditions:

Menu bar \rightarrow select \rightarrow entities areas \rightarrow by num/pick \rightarrow apply \rightarrow select small end of the shaft which is fixed \rightarrow apply \rightarrow ok.

Select \rightarrow entities \rightarrow nodes \rightarrow attached to \rightarrow areas, all \rightarrow apply \rightarrow ok.

Menu bar \rightarrow plot \rightarrow nodes.

Solution \rightarrow loads \rightarrow apply \rightarrow displacement \rightarrow on nodes \rightarrow pickall \rightarrow apply all DOF except ROTX (about which shaft rotate) \rightarrow ok.

Menu bar \rightarrow Select everything.

CAD Laboratory

Menu bar \rightarrow plot \rightarrow multiplot.

9. Application of Angular velocity:

Solution \rightarrow loads \rightarrow apply \rightarrow others \rightarrow angular velocity \rightarrow enter the value of angular velocity (co_x) = (2x π x 1000/60 = 104 r/s) \rightarrow ok.

10.Application of Torque:

Torque is applied at the other end of the shaft at 52.5 mm radius

Calculation of Torque:

 $p = \frac{2\pi NT}{60000}$; $\frac{P * 6000}{2\pi N} = \frac{5 * 60000}{2\pi * 1000} = 47.7 Nm = 47746.5 Nmm$

Coupling the Nodes:

Utility menu \rightarrow select \rightarrow entities \rightarrow node \rightarrow by num/pick \rightarrow apply \rightarrow enter 11)000 \rightarrow ok.

Utility menu \rightarrow plot \rightarrow nodes.

Utility menu \rightarrow plot \rightarrow lines

Utility menu \rightarrow select \rightarrow entities \rightarrow lines \rightarrow by num/pick \rightarrow apply \rightarrow select front end circle lines \rightarrow ok.

Utility menu \rightarrow select \rightarrow entities \rightarrow node \rightarrow attached to \rightarrow lines, all \rightarrow also select apply \rightarrow ok.

Utility menu \rightarrow plot \rightarrow nodes

Main menu \rightarrow Preprocessor \rightarrow coupling/Ceqn \rightarrow Rigid region \rightarrow enter master node as 50000 \rightarrow apply select the circumferential nodes on the circle of the shaft \rightarrow ok.

In constraint equation for regid region table \rightarrow enter Ld of -> all applicable, Ldof2 \rightarrow slave

rotate ROTZ, LdofB \rightarrow slave rotate ROTZ, Ldof4 \rightarrow slave rotate ROTZ

(the direction in which axis shaft rotates) \rightarrow ok

Solution \rightarrow solve \rightarrow current LS

11. General Post processing:

Gen. post processor \rightarrow plot results \rightarrow nodal solution \rightarrow stress \rightarrow von-mises \rightarrow

Date :

KLNCE

Coupled Structural/Thermal Analysis

Problem Specification:

Length of the link = 1m Area = 4e-4 m Element = Link 33(Thermal Mass Link 3D conduction) KXX = 60.5Mesh Edge length = 0.1 m Element = Link 8 EX : 200e9 PRXY : 0.3ALPX : 12e-6

When the input of one physics analysis depends on the results from another analysis, the analyses are coupled."

Thus, each different physics environment must be constructed seperately so they can be used to determine the coupled physics solution. However, it is important to note that a single set of nodes will exist for the entire model. By creating the geometry in the first physical environment, and using it with any following coupled environments, the geometry is kept constant. For our case, we will create the geometry in the Thermal Environment, where the thermal effects will be applied. Although the geometry must remain constant, the element types can change. For instance, thermal elements are required for a thermal analysis while structural elements are required to deterime the stress in the link. It is important to note, however that only certain combinations of elements can be used for a coupled physics analysis.

Thermal Environment - Create Geometry and Define Thermal Properties

1. Give example a Title

Utility Menu > File > Change Title ... /title, Thermal Stress Example

2. Open preprocessor menu

ANSYS Main Menu > Preprocessor / PREP7

3. Define Keypoints

Preprocessor > Modeling > Create > Keypoints > In Active CS... K, #, x, y, z

We are going to define 2 keypoints for this link as given in the following table:

Key point	Coordinates (x,y,z)	
1	(0,0)	
2	(1,0)	

4. Create Lines

Preprocessor > Modeling > Create > Lines > Lines > In Active Coord L, 1, 2

Create a line joining Keypoints 1 and 2, representing a link 1 meter long.

5. Define the Type of Element

Preprocessor > Element Type > Add/Edit/Delete...

For this problem we will use the LINK33 (Thermal Mass Link 3D conduction) element. This element is a uniaxial element with the ability to conduct heat between its nodes.

6. Define Real Constants

Preprocessor > Real Constants... > Add...

In the 'Real Constants for LINK33' window, enter the following geometric properties:

i. Cross-sectional area AREA: 4e-4

This defines a beam with a cross-sectional area of 2 cm X 2 cm.

7. Define Element Material Properties

Preprocessor > Material Props > Material Models > Thermal > Conductivity > Isotropic

In the window that appears, enter the following geometric properties for steel:

i. KXX: 60.5

8. Define Mesh Size

Preprocessor > Meshing > Size Cntrls > ManualSize > Lines > All Lines...

For this example we will use an element edge length of 0.1 meters.

9. Mesh the frame

Preprocessor > Meshing > Mesh > Lines > click 'Pick All'

10. Write Environment

The thermal environment (the geometry and thermal properties) is now fully described and can be written to memory to be used at a later time.

Preprocessor > Physics > Environment > Write

In the window that appears, enter the TITLE Thermal and click OK.

N Physics Write		×
[PHYSICS,WRITE] Write physics file		
Title Physics file title		Thermal
Fname File name		
Fext File extension		
Dir Directory		
OK Apply	Cancel	Help

11. Clear Environment

Preprocessor > Physics > Environment > Clear > OK

Doing this clears all the information prescribed for the geometry, such as the element type, material properties, etc. It does not clear the geometry however, so it can be used in the next stage, which is defining the structural environment.

Structural Environment - Define Physical Properties

Since the geometry of the problem has already been defined in the previous steps, all that is required is to detail the structural variables.

1.Switch Element Type

Preprocessor > Element Type > Switch Elem Type

Choose Thermal to Struc from the scoll down list.

This will switch to the complimentary structural element automatically. In this case it is LINK 8. For more information on this element, see the help file. A warning saying you should modify the new element as necessary will pop up. In this case, only the material properties need to be modified as the geometry is staying the same.

2.Define Element Material Properties

Preprocessor > Material Props > Material Models > Structural > Linear > Elastic > Isotropic

In the window that appears, enter the following geometric properties for steel:

- i. Young's Modulus EX: 200e9
- ii. Poisson's Ratio PRXY: 0.3

Preprocessor > Material Props > Material Models > Structural > Thermal Expansion secant Coefficient > Isotropic

i. ALPX: 12e-6

3.Write Environment

The structural environment is now fully described. Preprocessor > Physics > Environment > Write

In the window that appears, enter the TITLE Struct

Solution Phase: Assigning Loads and Solving

1. Define Analysis Type

Solution > Analysis Type > New Analysis > Static ANTYPE, 0

2. Read in the Thermal Environment

Solution > Physics > Environment > Read

Choose thermal and click OK.

N Physics Read	X
[PHYSICS,READ] Read physics file	
Read Physics file with Title	thermal struct
Browse through defined files?	thermal
ОК Арру	Cancel Help

If the Physics option is not available under Solution, click **Unabridged Menu** at the bottom of the Solution menu. This should make it visible.

1. Apply Constraints

Solution > Define Loads > Apply > Thermal > Temperature > On Keypoints

Set the temperature of Keypoint 1, the left-most point, to 348 Kelvin.

2. Solve the System

 $Solution > Solve > Current \ LS > \texttt{Solve}$

3. Close the Solution Menu

Main Menu > Finish It is very important to click **Finish** as it closes that environment and allows a new one to be opened without contamination. If this is not done, you will get error messages.

The thermal solution has now been obtained. If you plot the steady-state temperature on the link, you will see it is a uniform 348 K, as expected. This information is saved in a file labelled Jobname.rth, were .rth is the thermal results file. Since the jobname wasn't changed

at the beginning of the analysis, this data can be found as **file.rth**. We will use these results in determing the structural effects.

1. Read in the Structural Environment

Solution > Physics > Environment > Read

Choose struct and click OK.

2. Apply Constraints

Solution > Define Loads > Apply > Structural > Displacement > On Keypoints

Fix Keypoint 1 for all DOF's and Keypoint 2 in the UX direction.

3. Include Thermal Effects

Solution > Define Loads > Apply > Structural > Temperature > From Therm Analy

As shown below, enter the file name File.rth. This couples the results from the solution of the thermal environment to the information prescribed in the structural environment and uses it during the analysis.

[LDREAD] Apply Temperature from Thermal A	alysis
LAB Selection label	TEMP
Identify the data set to be read from the result	fle .
LSTEP,SBSTEP,TIME	
Load step and substep no.	
or	
Time-point	
Fname Name of results file	fle.rth Browse
[Use TEMS only if thermal shell 131/132 were u	ed in thermal analysis]
	and the second sec

4. Define Reference Temperature

Preprocessor > Loads > Define Loads > Settings > Reference Temp

For this example set the reference temperature to 273 degrees Kelvin.

Reference Temperatur	e	×
[TREF] Reference temperate	ure -	273
- for thermal strain calco	ulations	
ОК	Cancel	Help

5. Solve the System

```
\begin{array}{l} Solution > Solve > Current \ LS \\ \texttt{SOLVE} \end{array}
```

Postprocessing: Viewing the Results

1. Hand Calculations

Hand calculations were performed to verify the solution found using ANSYS:

Expansion due to thermal stress in a link can be calculated using:

$$\delta = \alpha \Delta T L$$

Expansion due to structural forces can be determined using:

$$\delta = \frac{PL}{EA}$$

Soving for the structural forces due to the thermal expansion,

$$P = \alpha \Delta T E A$$

Or

$$\sigma \,=\, \frac{F}{A} \,=\, \alpha \Delta T E$$

Therefore, in this example

 $\sigma = (0.000012/K)(348 K - 273 K)(200e3 MPa) = 180 MPa$

As shown, the stress in the link should be a uniform 180 MPa in compression.

2. Get Stress Data

Since the element is only a line, the stress can't be listed in the normal way. Instead, an element table must be created first.

General Postproc > Element Table > Define Table > Add

Fill in the window as shown below. [CompStr > By Sequence Num > LS > LS,1 <code>ETABLE,CompStress,LS,1</code>

A Define Additional Element Table Items [AVPRIN] Eff NU for EQV strain	0		×
[ETABLE] Define Additional Element Table Items			
Lab User label for item	CompStr		
Item,Comp Results data item	Strain-plastic Strain-creep Strain-other Contact Optimization	SMISC, NMISC, LEPEL, LEPEL, LEPTH,	-
	By sequence num	LS, 1	
(For "By sequence num", enter sequence no. In Selection box. See Table 4.xx-3 in Elements Manual for seq. numbers.)			
OK Apply	Cancel	Help	

3. List the Stress Data

 $General \ Postproc > Element \ Table > List \ Elem \ Table > COMPSTR > OK$

PRETAB, CompStr

\Lambda List Element Table Data	2	<
[PRETAB] List Element Table Data		
Lab1-9 Items to be listed	COMPSTR Items 1-10 GRP1 Items 11-20 GRP2 Items 21-30 GRP3 Items 31-40 GRP4	-
OK Apply	Cancel Help	

The following list should appear. Note the stress in each element: -0.180e9 Pa, or 180 MPa in compression as expected.

PRETAB Command	×
Be	
PRINT ELEMENT TABLE ITEMS PER ELEMENT	*
NNNNN POSTI ELEMENT TABLE LISTING NNNNN	
STAT CURRENT ELEM COMPSTR 1 -0.18000E+09 2 -0.18000E+09 3 -0.18000E+09 4 -0.18000E+09 5 -0.18000E+09 6 -0.18000E+09 7 -0.18000E+09 8 -0.18000E+09	
9 -0.18000E+09 10 -0.18000E+09	
MINIMUM UQLUES ELEM 5 UQLUE -0.18000E+09	
MAXIMUM VALUES ELEM 1 VALUE -0.18800E+09	<u>_</u>

Result:

Thus the coupled analysis for thermal and structural is conducted using ANSYS software and the results are plotted.

PROGRAM OUTCOMES (POs)

Mechanical Engineering Graduates will be able to

1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to solution of complex engineering problems.
2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
3	Design / development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
5	Modern tool usage: Create, select and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society atlarge, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects in multidisciplinary environments.
12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

K.L.N. COLLEGE OF ENGINEERING

VISION

To become a Centre of Excellence in Technical Education and Research in producing Competent and Ethical professionals to the Society.

MISSION

To impart Value and Need based curriculum to the students with enriched skill development in the field of Engineering, Technology, Management and Entrepreneurship and to nurture their character with social concern and to pursue their career in the areas of Research and Industry.

Principal

Secretary & Correspondent

President